diff --git a/c/qrcodegen.c b/c/qrcodegen.c index 3818499..d426f27 100644 --- a/c/qrcodegen.c +++ b/c/qrcodegen.c @@ -129,6 +129,7 @@ bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { size_t textLen = strlen(text); + size_t i; if (textLen == 0) return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); @@ -145,7 +146,7 @@ bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode } else { if (textLen > bufLen) goto fail; - for (size_t i = 0; i < textLen; i++) + for (i = 0; i < textLen; i++) tempBuffer[i] = (uint8_t)text[i]; seg.mode = qrcodegen_Mode_BYTE; seg.bitLength = calcSegmentBitLength(seg.mode, textLen); @@ -183,7 +184,8 @@ bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcod // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits. testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); - for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) + int i; + for (i = numBits - 1; i >= 0; i--, (*bitLen)++) buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); } @@ -208,6 +210,9 @@ bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], siz // Find the minimal version number to use int version, dataUsedBits; + int i, j; + size_t k; + uint8_t padByte; for (version = minVersion; ; version++) { int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available dataUsedBits = getTotalBits(segs, len, version); @@ -221,7 +226,7 @@ bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], siz assert(dataUsedBits != -1); // Increase the error correction level while the data still fits in the current version number - for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { // From low to high + for (i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { // From low to high if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8) ecl = (enum qrcodegen_Ecc)i; } @@ -229,11 +234,11 @@ bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], siz // Concatenate all segments to create the data bit string memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); int bitLen = 0; - for (size_t i = 0; i < len; i++) { - const struct qrcodegen_Segment *seg = &segs[i]; + for (k = 0; k < len; k++) { + const struct qrcodegen_Segment *seg = &segs[k]; appendBitsToBuffer((int)seg->mode, 4, qrcode, &bitLen); appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen); - for (int j = 0; j < seg->bitLength; j++) + for (j = 0; j < seg->bitLength; j++) appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen); } assert(bitLen == dataUsedBits); @@ -249,7 +254,7 @@ bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], siz assert(bitLen % 8 == 0); // Pad with alternating bytes until data capacity is reached - for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) + for (padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) appendBitsToBuffer(padByte, 8, qrcode, &bitLen); // Draw function and data codeword modules @@ -262,7 +267,7 @@ bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], siz // Handle masking if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask long minPenalty = LONG_MAX; - for (int i = 0; i < 8; i++) { + for (i = 0; i < 8; i++) { enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i; applyMask(tempBuffer, qrcode, msk); drawFormatBits(ecl, msk, qrcode); @@ -297,22 +302,22 @@ testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ec int dataLen = getNumDataCodewords(version, ecl); int numShortBlocks = numBlocks - rawCodewords % numBlocks; int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; - + int i, j, k; // Split data into blocks, calculate ECC, and interleave // (not concatenate) the bytes into a single sequence uint8_t generator[qrcodegen_REED_SOLOMON_DEGREE_MAX]; calcReedSolomonGenerator(blockEccLen, generator); const uint8_t *dat = data; - for (int i = 0; i < numBlocks; i++) { + for (i = 0; i < numBlocks; i++) { int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1); uint8_t *ecc = &data[dataLen]; // Temporary storage calcReedSolomonRemainder(dat, datLen, generator, blockEccLen, ecc); - for (int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data + for (j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data if (j == shortBlockDataLen) k -= numShortBlocks; result[k] = dat[j]; } - for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC + for (j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC result[k] = ecc[j]; dat += datLen; } @@ -353,16 +358,16 @@ testable int getNumRawDataModules(int ver) { testable void calcReedSolomonGenerator(int degree, uint8_t result[]) { // Start with the monomial x^0 assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); + int i, j; memset(result, 0, degree * sizeof(result[0])); result[degree - 1] = 1; - // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). uint8_t root = 1; - for (int i = 0; i < degree; i++) { + for (i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) - for (int j = 0; j < degree; j++) { + for (j = 0; j < degree; j++) { result[j] = finiteFieldMultiply(result[j], root); if (j + 1 < degree) result[j] ^= result[j + 1]; @@ -379,12 +384,13 @@ testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, // Perform polynomial division assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); + int i, j; memset(result, 0, degree * sizeof(result[0])); - for (int i = 0; i < dataLen; i++) { + for (i = 0; i < dataLen; i++) { uint8_t factor = data[i] ^ result[0]; memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); result[degree - 1] = 0; - for (int j = 0; j < degree; j++) + for (j = 0; j < degree; j++) result[j] ^= finiteFieldMultiply(generator[j], factor); } } @@ -397,7 +403,8 @@ testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { // Russian peasant multiplication uint8_t z = 0; - for (int i = 7; i >= 0; i--) { + int i; + for (i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >> 7) * 0x11D); z ^= ((y >> i) & 1) * x; } @@ -413,6 +420,7 @@ testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { testable void initializeFunctionModules(int version, uint8_t qrcode[]) { // Initialize QR Code int qrsize = version * 4 + 17; + int i, j; memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); qrcode[0] = (uint8_t)qrsize; @@ -428,8 +436,8 @@ testable void initializeFunctionModules(int version, uint8_t qrcode[]) { // Fill numerous alignment patterns uint8_t alignPatPos[7]; int numAlign = getAlignmentPatternPositions(version, alignPatPos); - for (int i = 0; i < numAlign; i++) { - for (int j = 0; j < numAlign; j++) { + for (i = 0; i < numAlign; i++) { + for (j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))) fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); @@ -450,14 +458,15 @@ testable void initializeFunctionModules(int version, uint8_t qrcode[]) { static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { // Draw horizontal and vertical timing patterns int qrsize = qrcodegen_getSize(qrcode); - for (int i = 7; i < qrsize - 7; i += 2) { + int i, j, dy, dx; + for (i = 7; i < qrsize - 7; i += 2) { setModule(qrcode, 6, i, false); setModule(qrcode, i, 6, false); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) - for (int dy = -4; dy <= 4; dy++) { - for (int dx = -4; dx <= 4; dx++) { + for (dy = -4; dy <= 4; dy++) { + for (dx = -4; dx <= 4; dx++) { int dist = abs(dx); if (abs(dy) > dist) dist = abs(dy); @@ -472,12 +481,12 @@ static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { // Draw numerous alignment patterns uint8_t alignPatPos[7]; int numAlign = getAlignmentPatternPositions(version, alignPatPos); - for (int i = 0; i < numAlign; i++) { - for (int j = 0; j < numAlign; j++) { + for (i = 0; i < numAlign; i++) { + for (j = 0; j < numAlign; j++) { if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) continue; // Don't draw on the three finder corners - for (int dy = -1; dy <= 1; dy++) { - for (int dx = -1; dx <= 1; dx++) + for (dy = -1; dy <= 1; dy++) { + for (dx = -1; dx <= 1; dx++) setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0); } } @@ -487,14 +496,14 @@ static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { if (version >= 7) { // Calculate error correction code and pack bits int rem = version; // version is uint6, in the range [7, 40] - for (int i = 0; i < 12; i++) + for (i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); long bits = (long)version << 12 | rem; // uint18 assert(bits >> 18 == 0); // Draw two copies - for (int i = 0; i < 6; i++) { - for (int j = 0; j < 3; j++) { + for (i = 0; i < 6; i++) { + for (j = 0; j < 3; j++) { int k = qrsize - 11 + j; setModule(qrcode, k, i, (bits & 1) != 0); setModule(qrcode, i, k, (bits & 1) != 0); @@ -514,25 +523,26 @@ static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uin static const int table[] = {1, 0, 3, 2}; int data = table[(int)ecl] << 3 | (int)mask; // errCorrLvl is uint2, mask is uint3 int rem = data; - for (int i = 0; i < 10; i++) + int i; + for (i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >> 9) * 0x537); int bits = (data << 10 | rem) ^ 0x5412; // uint15 assert(bits >> 15 == 0); // Draw first copy - for (int i = 0; i <= 5; i++) + for (i = 0; i <= 5; i++) setModule(qrcode, 8, i, getBit(bits, i)); setModule(qrcode, 8, 7, getBit(bits, 6)); setModule(qrcode, 8, 8, getBit(bits, 7)); setModule(qrcode, 7, 8, getBit(bits, 8)); - for (int i = 9; i < 15; i++) + for (i = 9; i < 15; i++) setModule(qrcode, 14 - i, 8, getBit(bits, i)); // Draw second copy int qrsize = qrcodegen_getSize(qrcode); - for (int i = 0; i < 8; i++) + for (i = 0; i < 8; i++) setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i)); - for (int i = 8; i < 15; i++) + for (i = 8; i < 15; i++) setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i)); setModule(qrcode, 8, qrsize - 8, true); // Always black } @@ -543,12 +553,13 @@ static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uin // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { + int i, pos; if (version == 1) return 0; int numAlign = version / 7 + 2; int step = (version == 32) ? 26 : (version*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2; - for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) + for (i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) result[i] = pos; result[0] = 6; return numAlign; @@ -557,8 +568,9 @@ testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { // Sets every pixel in the range [left : left + width] * [top : top + height] to black. static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { - for (int dy = 0; dy < height; dy++) { - for (int dx = 0; dx < width; dx++) + int dy, dx; + for (dy = 0; dy < height; dy++) { + for (dx = 0; dx < width; dx++) setModule(qrcode, left + dx, top + dy, true); } } @@ -572,12 +584,13 @@ static void fillRectangle(int left, int top, int width, int height, uint8_t qrco static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { int qrsize = qrcodegen_getSize(qrcode); int i = 0; // Bit index into the data + int j, right, vert; // Do the funny zigzag scan - for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair + for (right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; - for (int vert = 0; vert < qrsize; vert++) { // Vertical counter - for (int j = 0; j < 2; j++) { + for (vert = 0; vert < qrsize; vert++) { // Vertical counter + for (j = 0; j < 2; j++) { int x = right - j; // Actual x coordinate bool upward = ((right + 1) & 2) == 0; int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate @@ -603,8 +616,9 @@ static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { assert(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO int qrsize = qrcodegen_getSize(qrcode); - for (int y = 0; y < qrsize; y++) { - for (int x = 0; x < qrsize; x++) { + int y, x; + for (y = 0; y < qrsize; y++) { + for (x = 0; x < qrsize; x++) { if (getModule(functionModules, x, y)) continue; bool invert; @@ -631,13 +645,13 @@ static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qr static long getPenaltyScore(const uint8_t qrcode[]) { int qrsize = qrcodegen_getSize(qrcode); long result = 0; - + int y, x; // Adjacent modules in row having same color, and finder-like patterns - for (int y = 0; y < qrsize; y++) { + for (y = 0; y < qrsize; y++) { unsigned char runHistory[7] = {0}; bool color = false; unsigned char runX = 0; - for (int x = 0; x < qrsize; x++) { + for (x = 0; x < qrsize; x++) { if (getModule(qrcode, x, y) == color) { runX++; if (runX == 5) @@ -659,11 +673,11 @@ static long getPenaltyScore(const uint8_t qrcode[]) { result += PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns - for (int x = 0; x < qrsize; x++) { + for (x = 0; x < qrsize; x++) { unsigned char runHistory[7] = {0}; bool color = false; unsigned char runY = 0; - for (int y = 0; y < qrsize; y++) { + for (y = 0; y < qrsize; y++) { if (getModule(qrcode, x, y) == color) { runY++; if (runY == 5) @@ -686,8 +700,8 @@ static long getPenaltyScore(const uint8_t qrcode[]) { } // 2*2 blocks of modules having same color - for (int y = 0; y < qrsize - 1; y++) { - for (int x = 0; x < qrsize - 1; x++) { + for (y = 0; y < qrsize - 1; y++) { + for (x = 0; x < qrsize - 1; x++) { bool color = getModule(qrcode, x, y); if ( color == getModule(qrcode, x + 1, y) && color == getModule(qrcode, x, y + 1) && @@ -698,8 +712,8 @@ static long getPenaltyScore(const uint8_t qrcode[]) { // Balance of black and white modules int black = 0; - for (int y = 0; y < qrsize; y++) { - for (int x = 0; x < qrsize; x++) { + for (y = 0; y < qrsize; y++) { + for (x = 0; x < qrsize; x++) { if (getModule(qrcode, x, y)) black++; } @@ -975,7 +989,8 @@ struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) { assert(segs != NULL || len == 0); long result = 0; - for (size_t i = 0; i < len; i++) { + size_t i; + for (i = 0; i < len; i++) { int numChars = segs[i].numChars; int bitLength = segs[i].bitLength; assert(0 <= numChars && numChars <= INT16_MAX);