feat: golang implementation from rust version

pull/119/head
Billy Yip 4 years ago
parent 4d13c303dc
commit a455af6e91

@ -0,0 +1,231 @@
package main
import (
"errors"
"fmt"
"strings"
"github.com/nayuki/qrcodegen"
"github.com/nayuki/qrcodegen/mask"
"github.com/nayuki/qrcodegen/qrcodeecc"
"github.com/nayuki/qrcodegen/qrsegment"
"github.com/nayuki/qrcodegen/version"
)
// The main application program.
func main() {
doBasicDemo()
doVarietyDemo()
doSegmentDemo()
doMaskDemo()
}
/*---- Demo suite ----*/
// Creates a single QR Code, then prints it to the console.
func doBasicDemo() {
text := "Hello, world!" // User-supplied Unicode text
errcorlevel := qrcodeecc.Low // Error correction level
// Make and print the QR Code symbol
qr, _ := qrcodegen.EncodeText(text, errcorlevel)
printQr(qr)
svg, _ := toSvgString(qr, 4)
fmt.Printf("%s", svg)
}
// Creates a variety of QR Codes that exercise different features of the library, and prints each one to the console.
func doVarietyDemo() {
// Numeric mode encoding (3.33 bits per digit)
qr, _ := qrcodegen.EncodeText("314159265358979323846264338327950288419716939937510", qrcodeecc.Medium)
printQr(qr)
// Alphanumeric mode encoding (5.5 bits per character)
qr, _ = qrcodegen.EncodeText("DOLLAR-AMOUNT:$39.87 PERCENTAGE:100.00% OPERATIONS:+-*/", qrcodeecc.High)
printQr(qr)
// Unicode text as UTF-8
qr, _ = qrcodegen.EncodeText("こんにちwa、世界 αβγδ", qrcodeecc.Quartile)
printQr(qr)
// Moderately large QR Code using longer text (from Lewis Carroll's Alice in Wonderland)
qr, _ = qrcodegen.EncodeText(
strings.Join(
[]string{
"Alice was beginning to get very tired of sitting by her sister on the bank, ",
"and of having nothing to do: once or twice she had peeped into the book her sister was reading, ",
"but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice ",
"'without pictures or conversations?' So she was considering in her own mind (as well as she could, ",
"for the hot day made her feel very sleepy and stupid), whether the pleasure of making a ",
"daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly ",
"a White Rabbit with pink eyes ran close by her.",
},
"",
),
qrcodeecc.High,
)
printQr(qr)
}
// Creates QR Codes with manually specified segments for better compactness.
func doSegmentDemo() {
// Illustration "silver"
silver0 := "THE SQUARE ROOT OF 2 IS 1."
silver1 := "41421356237309504880168872420969807856967187537694807317667973799"
qr, _ := qrcodegen.EncodeText(
strings.Join(
[]string{
silver0,
silver1,
},
"",
),
qrcodeecc.Low,
)
printQr(qr)
segs := []qrsegment.QrSegment{
qrsegment.MakeAlphanumeric(toChars(silver0)),
qrsegment.MakeNumeric(toChars(silver1)),
}
qr, _ = qrcodegen.EncodeSegments(segs, qrcodeecc.Low)
printQr(qr)
// Illustration "golden"
golden0 := "Golden ratio φ = 1."
golden1 := "6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374"
golden2 := "......"
qr, _ = qrcodegen.EncodeText(
strings.Join(
[]string{
golden0,
golden1,
golden2,
},
"",
),
qrcodeecc.Low,
)
printQr(qr)
segs = []qrsegment.QrSegment{
qrsegment.MakeBytes([]byte(golden0)),
qrsegment.MakeNumeric(toChars(golden1)),
qrsegment.MakeAlphanumeric(toChars(golden2)),
}
qr, _ = qrcodegen.EncodeSegments(segs, qrcodeecc.Low)
printQr(qr)
// Illustration "Madoka": kanji, kana, Cyrillic, full-width Latin, Greek characters
madoka := "「魔法少女まどか☆マギカ」って、 ИАИ desu κα?"
qr, _ = qrcodegen.EncodeText(madoka, qrcodeecc.Low)
printQr(qr)
kanjichars := []uint32{ // Kanji mode encoding (13 bits per character)
0x0035, 0x1002, 0x0FC0, 0x0AED, 0x0AD7,
0x015C, 0x0147, 0x0129, 0x0059, 0x01BD,
0x018D, 0x018A, 0x0036, 0x0141, 0x0144,
0x0001, 0x0000, 0x0249, 0x0240, 0x0249,
0x0000, 0x0104, 0x0105, 0x0113, 0x0115,
0x0000, 0x0208, 0x01FF, 0x0008,
}
bb := qrsegment.BitBuffer{}
for _, c := range kanjichars {
bb.AppendBits(c, 13)
}
segs = []qrsegment.QrSegment{
qrsegment.New(
qrsegment.ModeKanji,
uint(len(kanjichars)),
bb,
),
}
qr, _ = qrcodegen.EncodeSegments(segs, qrcodeecc.Low)
printQr(qr)
}
// Creates QR Codes with the same size and contents but different mask patterns.
func doMaskDemo() {
// Project Nayuki URL
segs := qrsegment.MakeSegments(toChars("https://www.nayuki.io/"))
qr, _ := qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.High, version.Min, version.Max, nil, true) // Automatic mask
printQr(qr)
m := mask.New(3)
qr, _ = qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.High, version.Min, version.Max, &m, true) // Force mask 3
printQr(qr)
// Chinese text as UTF-8
segs = qrsegment.MakeSegments(toChars("維基百科Wikipedia聆聽i/ˌwɪkᵻˈpiːdi.ə/)是一個自由內容、公開編輯且多語言的網路百科全書協作計畫"))
m = mask.New(0)
qr, _ = qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.Medium, version.Min, version.Max, &m, true) // Force mask 0
printQr(qr)
m = mask.New(1)
qr, _ = qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.Medium, version.Min, version.Max, &m, true) // Force mask 1
printQr(qr)
m = mask.New(5)
qr, _ = qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.Medium, version.Min, version.Max, &m, true) // Force mask 5
printQr(qr)
m = mask.New(7)
qr, _ = qrcodegen.EncodeSegmentsAdvanced(segs, qrcodeecc.Medium, version.Min, version.Max, &m, true) // Force mask 7
printQr(qr)
}
/*---- Utilities ----*/
// Returns a string of SVG code for an image depicting
// the given QR Code, with the given number of border modules.
// The string always uses Unix newlines (\n), regardless of the platform.
func toSvgString(qr *qrcodegen.QrCode, border int32) (string, error) {
if border < 0 {
return "", errors.New("Border must be non-negative")
}
var sb strings.Builder
sb.WriteString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
sb.WriteString("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n")
// TODO: check overflow?
dimension := qr.Size() + border*2
sb.WriteString(fmt.Sprintf("<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 %d %d\" stroke=\"none\">\n", dimension, dimension))
sb.WriteString("\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n")
sb.WriteString("\t<path d=\"")
for y := 0; y < int(qr.Size()); y++ {
for x := 0; x < int(qr.Size()); x++ {
if qr.GetModule(int32(x), int32(y)) {
if x != 0 || y != 0 {
sb.WriteString(" ")
}
sb.WriteString(fmt.Sprintf("M%d,%dh1v1h-1z", x+int(border), y+int(border)))
}
}
}
sb.WriteString("\" fill=\"#000000\"/>\n")
sb.WriteString("</svg>\n")
return sb.String(), nil
}
// Prints the given QrCode object to the console.
func printQr(qr *qrcodegen.QrCode) {
border := int32(4)
for y := -border; y < qr.Size()+border; y++ {
for x := -border; x < qr.Size()+border; x++ {
var c rune
if qr.GetModule(x, y) {
c = '█'
} else {
c = ' '
}
fmt.Printf("%c%c", c, c)
}
fmt.Println()
}
fmt.Println()
}
// Converts the given borrowed string slice to a new character vector.
func toChars(str string) []rune {
return []rune(str)
}

@ -0,0 +1,3 @@
module github.com/nayuki/qrcodegen
go 1.16

@ -0,0 +1,6 @@
package bitx
// GetBit returns true iff the i'th bit of x is set to 1.
func GetBit(x uint32, i int32) bool {
return (x>>i)&1 != 0
}

@ -0,0 +1,57 @@
package mathx
// TODO: refer to rust wrapping_neg(), not sure if same behavior on edge cases
func WrappingNeg(x int) int {
if x > 0 {
return -x
}
return x
}
func MinUint(left, right uint) uint {
if left < right {
return left
}
return right
}
func MinInt(left, right int) int {
if left < right {
return left
}
return right
}
func MaxInt32(left, right int32) int32 {
if left > right {
return left
}
return right
}
func AbsInt32(x int32) int32 {
if x < 0 {
return -x
}
return x
}
func BoolToUint8(b bool) uint8 {
if b {
return 1
} else {
return 0
}
}
func BoolToInt32(b bool) int32 {
if b {
return 1
} else {
return 0
}
}

@ -0,0 +1,19 @@
package mask
// Mask is a number between 0 and 7 (inclusive).
type Mask uint8
// New creates a mask object from the given number.
func New(mask uint8) Mask {
// Panics if the number is outside the range [0, 7].
if mask > 7 {
panic("Mask value out of range")
}
return Mask(mask)
}
// Value returns the value, which is in the range [0, 7].
func (m Mask) Value() uint8 {
return uint8(m)
}

@ -0,0 +1,49 @@
package qrcodeecc
/*---- QrCodeEcc functionality ----*/
// QrCodeEcc is the error correction level in a QR Code symbol.
type QrCodeEcc uint
const (
// Low means the QR Code can tolerate about 7% erroneous codewords.
Low QrCodeEcc = 0
// Medium means the QR Code can tolerate about 15% erroneous codewords.
Medium QrCodeEcc = 1
// Quartile means the QR Code can tolerate about 25% erroneous codewords.
Quartile QrCodeEcc = 2
// High means the QR Code can tolerate about 30% erroneous codewords.
High QrCodeEcc = 3
)
// Ordinal returns an unsigned 2-bit integer (in the range 0 to 3).
func (q QrCodeEcc) Ordinal() uint {
switch q {
case Low:
return 0
case Medium:
return 1
case Quartile:
return 2
case High:
return 3
default:
panic("unknown QrCodeEcc")
}
}
// FormatBits returns an unsigned 2-bit integer (in the range 0 to 3).
func (q QrCodeEcc) FormatBits() uint8 {
switch q {
case Low:
return 1
case Medium:
return 0
case Quartile:
return 3
case High:
return 2
default:
panic("unknown QrCodeEcc")
}
}

@ -0,0 +1,889 @@
package qrcodegen
import (
"errors"
"fmt"
"math"
"github.com/nayuki/qrcodegen/internal/bitx"
"github.com/nayuki/qrcodegen/internal/mathx"
"github.com/nayuki/qrcodegen/mask"
"github.com/nayuki/qrcodegen/qrcodeecc"
"github.com/nayuki/qrcodegen/qrsegment"
"github.com/nayuki/qrcodegen/version"
)
/*---- Miscellaneous values ----*/
var (
// ErrDataTooLong is the error type when the supplied data does not fit any QR Code version.
//
// Ways to handle this exception include:
//
// - Decrease the error correction level if it was greater than `QrCodeEcc::Low`.
// - If the `encode_segments_advanced()` function was called, then increase the maxversion
// argument if it was less than `Version::MAX`. (This advice does not apply to the
// other factory functions because they search all versions up to `Version::MAX`.)
// - Split the text data into better or optimal segments in order to reduce the number of bits required.
// - Change the text or binary data to be shorter.
// - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric).
// - Propagate the error upward to the caller/user.
ErrDataTooLong = errors.New("DataTooLong")
)
// alias
type Version = version.Version
type QrCodeEcc = qrcodeecc.QrCodeEcc
type Mask = mask.Mask
/*---- QrCode functionality ----*/
// QrCode is a QR Code symbol, which is a type of two-dimension barcode.
//
// Invented by Denso Wave and described in the ISO/IEC 18004 standard.
//
// Instances of this struct represent an immutable square grid of dark and light cells.
// The impl provides static factory functions to create a QR Code from text or binary data.
// The struct and impl cover the QR Code Model 2 specification, supporting all versions
// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
//
// Ways to create a QR Code object:
//
// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`.
// - Mid level: Custom-make the list of segments and call
// `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`.
// - Low level: Custom-make the array of data codeword bytes (including segment
// headers and final padding, excluding error correction codewords), supply the
// appropriate version number, and call the `QrCode::encode_codewords()` constructor.
//
// (Note that all ways require supplying the desired error correction level.)
type QrCode struct {
// Scalar parameters:
// The version number of this QR Code, which is between 1 and 40 (inclusive).
// This determines the size of this barcode.
version Version
// The width and height of this QR Code, measured in modules, between
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
size int32
// The error correction level used in this QR Code.
errorcorrectionlevel QrCodeEcc
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
// Even if a QR Code is created with automatic masking requested (mask = None),
// the resulting object still has a mask value between 0 and 7.
mask Mask
// Grids of modules/pixels, with dimensions of size*size:
// The modules of this QR Code (false = light, true = dark).
// Immutable after constructor finishes. Accessed through get_module().
modules []bool
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
isfunction []bool
}
/*---- Static factory functions (high level) ----*/
// EncodeText returns a QR Code representing the given Unicode text string at the given error correction level.
//
// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
// the ecl argument if it can be done without increasing the version.
//
// Returns a wrapped `QrCode` if successful, or `Err` if the
// data is too long to fit in any version at the given ECC level.
func EncodeText(text string, ecl QrCodeEcc) (*QrCode, error) {
chrs := []rune(text)
segs := qrsegment.MakeSegments(chrs)
return EncodeSegments(segs, ecl)
}
// EncodeBinary returns a QR Code representing the given binary data at the given error correction level.
//
// This function always encodes using the binary segment mode, not any text mode. The maximum number of
// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
//
// Returns a wrapped `QrCode` if successful, or `Err` if the
// data is too long to fit in any version at the given ECC level.
func EncodeBinary(data []uint8, ecl QrCodeEcc) (*QrCode, error) {
seg := qrsegment.MakeBytes(data)
segs := []qrsegment.QrSegment{seg}
return EncodeSegments(segs, ecl)
}
/*---- Static factory functions (mid level) ----*/
// EncodeSegments returns a QR Code representing the given segments at the given error correction level.
//
// The smallest possible QR Code version is automatically chosen for the output. The ECC level
// of the result may be higher than the ecl argument if it can be done without increasing the version.
//
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
//
// Returns a wrapped `QrCode` if successful, or `Err` if the
// data is too long to fit in any version at the given ECC level.
func EncodeSegments(segs []qrsegment.QrSegment, ecl QrCodeEcc) (*QrCode, error) {
return EncodeSegmentsAdvanced(segs, ecl, version.Min, version.Max, nil, true)
}
// EncodeSegmentsAdvanced returns a QR Code representing the given segments with the given encoding parameters.
//
// The smallest possible QR Code version within the given range is automatically
// chosen for the output. Iff boostecl is `true`, then the ECC level of the result
// may be higher than the ecl argument if it can be done without increasing the
// version. The mask number is either between 0 to 7 (inclusive) to force that
// mask, or `None` to automatically choose an appropriate mask (which may be slow).
//
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
//
// Returns a wrapped `QrCode` if successful, or `Err` if the data is too
// long to fit in any version in the given range at the given ECC level.
func EncodeSegmentsAdvanced(
segs []qrsegment.QrSegment,
ecl QrCodeEcc,
minversion Version,
maxversion Version,
mask *Mask,
boostecl bool,
) (q *QrCode, err error) {
if minversion > maxversion {
panic("Invalid value")
}
// Find the minimal version number to use
ver := minversion
var datausedbits uint
for {
// Number of data bits available
datacapacitybits := getNumDataCodewords(ver, ecl) * 8
dataused := qrsegment.GetTotalBits(segs, ver)
// TODO: refactor to match closer to the semantics of rust counterpart map_or
mapOr := false
if dataused != nil {
mapOr = *dataused <= datacapacitybits
}
if mapOr {
datausedbits = *dataused // This version number is found to be suitable
break
} else if ver.Value() >= maxversion.Value() { // All versions in the range could not fit the given data
if dataused == nil {
return nil, fmt.Errorf("%w: Segment too long", ErrDataTooLong)
}
return nil, fmt.Errorf("%w: Data length = %v bits, Max capacity = %v bits", ErrDataTooLong, *dataused, datacapacitybits)
} else {
ver = version.New(ver.Value() + 1)
}
}
// Increase the error correction level while the data still fits in the current version number
for _, newecl := range []QrCodeEcc{qrcodeecc.Medium, qrcodeecc.Quartile, qrcodeecc.High} { // From low to high
if boostecl && datausedbits <= getNumDataCodewords(ver, newecl)*8 {
ecl = newecl
}
}
// Concatenate all segments to create the data bit string
bb := qrsegment.BitBuffer{}
for _, seg := range segs {
bb.AppendBits(seg.Mode().ModeBits(), 4)
bb.AppendBits(uint32(seg.NumChars()), seg.Mode().NumCharCountBits(ver))
bb = append(bb, seg.Data()...)
}
if len(bb) != int(datausedbits) {
panic("len(bb) != int(datausedbits)")
}
// Add terminator and pad up to a byte if applicable
datacapacitybits := getNumDataCodewords(ver, ecl) * 8
if len(bb) > int(datacapacitybits) {
panic("len(bb) > int(datacapacitybits)")
}
numzerobits := mathx.MinUint(4, datacapacitybits-uint(len(bb)))
bb.AppendBits(0, uint8(numzerobits))
// TODO: check edge case for WrappingNeg
numzerobits = uint(mathx.WrappingNeg(len(bb)) & 7)
bb.AppendBits(0, uint8(numzerobits))
if len(bb)%8 != 0 {
panic("len(bb)%8 != 0")
}
// TODO: refactor to match closer to the semantics of rust counterpart .iter().cycle()
// Pad with alternating bytes until data capacity is reached
for {
for _, padByte := range []uint32{0xEC, 0x11} {
if len(bb) >= int(datacapacitybits) {
goto Donepad
}
bb.AppendBits(padByte, 8)
}
}
Donepad:
// Pack bits into bytes in big endian
datacodewords := make([]uint8, len(bb)/8)
for i, bit := range bb {
datacodewords[i>>3] |= mathx.BoolToUint8(bit) << (7 - (i & 7))
}
// Create the QR Code object
q = EncodeCodewords(ver, ecl, datacodewords, mask)
return q, nil
}
/*---- Constructor (low level) ----*/
// EncodeCodewords creates a new QR Code with the given version number,
// error correction level, data codeword bytes, and mask number.
//
// This is a low-level API that most users should not use directly.
// A mid-level API is the `encode_segments()` function.
func EncodeCodewords(ver Version, ecl QrCodeEcc, datacodewords []uint8, m *Mask) *QrCode {
size := uint(ver.Value())*4 + 17
result := &QrCode{
version: ver,
size: int32(size),
mask: mask.New(0), // Dummy value
errorcorrectionlevel: ecl,
modules: make([]bool, size*size), // Initially all light
isfunction: make([]bool, size*size),
}
// Compute ECC, draw modules
result.drawFunctionPatterns()
allcodewords := result.addEccAndInterleave(datacodewords)
result.drawCodewords(allcodewords)
// Do masking
if m == nil { // Automatically choose best mask
minpenalty := int32(math.MaxInt32)
for i, max := uint8(0), uint8(8); i < max; i++ {
newmask := mask.New(i)
result.applyMask(newmask)
result.drawFormatBits(newmask)
penalty := result.getPenaltyScore()
if penalty < minpenalty {
m = &newmask
minpenalty = penalty
}
result.applyMask(newmask) // Undoes the mask due to XOR
}
}
newmask := *m
result.mask = newmask
result.applyMask(newmask) // Apply the final choice of mask
result.drawFormatBits(newmask) // Overwrite old format bits
result.isfunction = result.isfunction[:0]
// TODO: need to implement rust shrink_to_fit() ?
return result
}
/*---- Public methods ----*/
// Version returns this QR Code's version, in the range [1, 40].
func (q QrCode) Version() Version {
return q.version
}
// Size returns this QR Code's size, in the range [21, 177].
func (q QrCode) Size() int32 {
return q.size
}
// ErrorCorrectionLevel returns this QR Code's error correction level.
func (q QrCode) ErrorCorrectionLevel() QrCodeEcc {
return q.errorcorrectionlevel
}
// Mask returns this QR Code's mask, in the range [0, 7].
func (q QrCode) Mask() Mask {
return q.mask
}
// GetModule returns the color of the module (pixel) at the given coordinates,
// which is `false` for light or `true` for dark.
//
// The top left corner has the coordinates (x=0, y=0). If the given
// coordinates are out of bounds, then `false` (light) is returned.
func (q QrCode) GetModule(x, y int32) bool {
return 0 <= x && x < q.size && 0 <= y && y < q.size && q.module(x, y)
}
// Returns the color of the module at the given coordinates, which must be in bounds.
func (q QrCode) module(x, y int32) bool {
return q.modules[uint(y*q.size+x)]
}
// TODO: refactor to match closer to the semantics of rust counterpart
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
func (q *QrCode) moduleMut(x, y int32, mut bool) {
q.modules[uint(y*q.size+x)] = mut
}
/*---- Private helper methods for constructor: Drawing function modules ----*/
// Reads this object's version field, and draws and marks all function modules.
func (q *QrCode) drawFunctionPatterns() {
// Draw horizontal and vertical timing patterns
size := int(q.size)
for i := 0; i < size; i++ {
q.setFunctionModule(6, int32(i), i%2 == 0)
q.setFunctionModule(int32(i), 6, i%2 == 0)
}
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
q.drawFinderPattern(3, 3)
q.drawFinderPattern(q.size-4, 3)
q.drawFinderPattern(3, q.size-4)
// Draw numerous alignment patterns
alignpatpos := q.getAlignmentPatternPositions()
numalign := len(alignpatpos)
for i := 0; i < numalign; i++ {
for j := 0; j < numalign; j++ {
// Don't draw on the three finder corners
if !(i == 0 && j == 0 || i == 0 && j == numalign-1 || i == numalign-1 && j == 0) {
q.drawAlignmentPattern(alignpatpos[i], alignpatpos[j])
}
}
}
// Draw configuration data
q.drawFormatBits(mask.New(0)) // Dummy mask value; overwritten later in the constructor
q.drawVersion()
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
func (q *QrCode) drawFormatBits(mask Mask) {
// Calculate error correction code and pack bits
var bits uint32
{
// errorcorrectionlevel is uint2, mask is uint3
data := uint32(q.errorcorrectionlevel.FormatBits()<<3 | mask.Value())
rem := data
for i := 0; i < 10; i++ {
rem = (rem << 1) ^ ((rem >> 9) * 0x537)
}
bits = (data<<10 | rem) ^ 0x5412 // uint15
}
if bits>>15 != 0 {
panic("bits>>15 != 0")
}
// Draw first copy
for i := int32(0); i < 6; i++ {
q.setFunctionModule(8, i, bitx.GetBit(bits, i))
}
q.setFunctionModule(8, 7, bitx.GetBit(bits, 6))
q.setFunctionModule(8, 8, bitx.GetBit(bits, 7))
q.setFunctionModule(7, 8, bitx.GetBit(bits, 8))
for i := int32(9); i < 15; i++ {
q.setFunctionModule(14-i, 8, bitx.GetBit(bits, i))
}
// Draw second copy
size := q.size
for i := int32(0); i < 8; i++ {
q.setFunctionModule(size-1-i, 8, bitx.GetBit(bits, i))
}
for i := int32(8); i < 15; i++ {
q.setFunctionModule(8, size-15+i, bitx.GetBit(bits, i))
}
q.setFunctionModule(8, size-8, true) // Always dark
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
func (q *QrCode) drawVersion() {
if q.version < 7 {
return
}
// Calculate error correction code and pack bits
var bits uint32
{
data := uint32(q.version.Value()) // uint6, in the range [7, 40]
rem := data
for i := 0; i < 12; i++ {
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25)
}
bits = data<<12 | rem // uint18
}
if bits>>18 != 0 {
panic("bits>>18 != 0")
}
// Draw two copies
for i := int32(0); i < 18; i++ {
bit := bitx.GetBit(bits, i)
a := q.size - 11 + i%3
b := i / 3
q.setFunctionModule(a, b, bit)
q.setFunctionModule(b, a, bit)
}
}
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
func (q *QrCode) drawFinderPattern(x, y int32) {
for dy := int32(-4); dy <= 4; dy++ {
for dx := int32(-4); dx <= 4; dx++ {
xx := x + dx
yy := y + dy
if 0 <= xx && xx < q.size && 0 <= yy && yy < q.size {
dist := mathx.MaxInt32(mathx.AbsInt32(dx), mathx.AbsInt32(dy)) // Chebyshev/infinity norm
q.setFunctionModule(xx, yy, dist != 2 && dist != 4)
}
}
}
}
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
func (q *QrCode) drawAlignmentPattern(x, y int32) {
for dy := int32(-2); dy <= 2; dy++ {
for dx := int32(-2); dx <= 2; dx++ {
q.setFunctionModule(x+dx, y+dy, mathx.MaxInt32(mathx.AbsInt32(dx), mathx.AbsInt32(dy)) != 1)
}
}
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
func (q *QrCode) setFunctionModule(x int32, y int32, isdark bool) {
q.moduleMut(x, y, isdark)
q.isfunction[(y*q.size + x)] = true
}
/*---- Private helper methods for constructor: Codewords and masking ----*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
func (q *QrCode) addEccAndInterleave(data []uint8) []uint8 {
ver := q.version
ecl := q.errorcorrectionlevel
if len(data) != int(getNumDataCodewords(ver, ecl)) {
panic("Illegal argument")
}
// Calculate parameter numbers
numblocks := tableGet(NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
blockecclen := tableGet(ECC_CODEWORDS_PER_BLOCK, ver, ecl)
rawcodewords := getNumRawDataModules(ver) / 8
numshortblocks := numblocks - (rawcodewords % numblocks)
shortblocklen := rawcodewords / numblocks
// Split data into blocks and append ECC to each block
blocks := make([][]uint8, 0, numblocks)
rsdiv := reedSolomonComputeDivisor(blockecclen)
var k uint
for i, max := uint(0), numblocks; i < max; i++ {
datlen := shortblocklen - blockecclen + uint(mathx.BoolToUint8(i >= numshortblocks))
dat := make([]uint8, datlen)
_ = copy(dat, data[k:k+datlen])
k += datlen
ecc := reedSolomonComputeRemainder(dat, rsdiv)
if i < numshortblocks {
dat = append(dat, 0)
}
dat = append(dat, ecc...)
blocks = append(blocks, dat)
}
// Interleave (not concatenate) the bytes from every block into a single sequence
result := make([]uint8, 0, rawcodewords)
for i, max := uint(0), shortblocklen; i <= max; i++ {
for j, block := range blocks {
// Skip the padding byte in short blocks
if i != shortblocklen-blockecclen || uint(j) >= numshortblocks {
result = append(result, block[i])
}
}
}
return result
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
func (q *QrCode) drawCodewords(data []uint8) {
if uint(len(data)) != getNumRawDataModules(q.version)/8 {
panic("Illegal argument")
}
var i uint // Bit index into the data
// Do the funny zigzag scan
right := q.size - 1
for right >= 1 { // Index of right column in each column pair
if right == 6 {
right = 5
}
for vert := int32(0); vert < q.size; vert++ { // Vertical counter
for j := int32(0); j < 2; j++ {
x := right - j // Actual x coordinate
upward := (right+1)&2 == 0
var y int32
if upward {
y = q.size - 1 - vert
} else {
y = vert
}
if !q.isfunction[(y*q.size+x)] && i < uint(len(data)*8) {
q.moduleMut(x, y, bitx.GetBit(uint32(data[i>>3]), int32(7-(i&7))))
i += 1
}
// If this QR Code has any remainder bits (0 to 7), they were assigned as
// 0/false/light by the constructor and are left unchanged by this method
}
}
right -= 2
}
if i != uint(len(data)*8) {
panic("i != uint(len(data)*8)")
}
}
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling apply_mask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
func (q *QrCode) applyMask(mask Mask) {
for y := int32(0); y < q.size; y++ {
for x := int32(0); x < q.size; x++ {
var invert bool
switch mask.Value() {
case 0:
invert = (x+y)%2 == 0
case 1:
invert = y%2 == 0
case 2:
invert = x%3 == 0
case 3:
invert = (x+y)%3 == 0
case 4:
invert = (x/3+y/2)%2 == 0
case 5:
invert = x*y%2+x*y%3 == 0
case 6:
invert = (x*y%2+x*y%3)%2 == 0
case 7:
invert = ((x+y)%2+x*y%3)%2 == 0
default:
panic("unreachable")
}
newModule := q.module(x, y) != (invert && !q.isfunction[(y*q.size+x)])
q.moduleMut(x, y, newModule)
}
}
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
func (q QrCode) getPenaltyScore() int32 {
var result int32
size := q.size
// Adjacent modules in row having same color, and finder-like patterns
for y := int32(0); y < size; y++ {
var runcolor bool
var runx int32
runhistory := newFinderPenalty(size)
for x := int32(0); x < size; x++ {
if q.module(x, y) == runcolor {
runx += 1
if runx == 5 {
result += PENALTY_N1
} else if runx > 5 {
result += 1
}
} else {
runhistory.addHistory(runx)
if !runcolor {
result += runhistory.countPatterns() * PENALTY_N3
}
runcolor = q.module(x, y)
runx = 1
}
}
result += runhistory.terminateAndCount(runcolor, runx) * PENALTY_N3
}
// Adjacent modules in column having same color, and finder-like patterns
for x := int32(0); x < size; x++ {
var runcolor bool
var runy int32
runhistory := newFinderPenalty(size)
for y := int32(0); y < size; y++ {
if q.module(x, y) == runcolor {
runy += 1
if runy == 5 {
result += PENALTY_N1
} else if runy > 5 {
result += 1
}
} else {
runhistory.addHistory(runy)
if !runcolor {
result += runhistory.countPatterns() * PENALTY_N3
}
runcolor = q.module(x, y)
runy = 1
}
}
result += runhistory.terminateAndCount(runcolor, runy) * PENALTY_N3
}
// 2*2 blocks of modules having same color
for y := int32(0); y < size-1; y++ {
for x := int32(0); x < size-1; x++ {
color := q.module(x, y)
if color == q.module(x+1, y) &&
color == q.module(x, y+1) &&
color == q.module(x+1, y+1) {
result += PENALTY_N2
}
}
}
// TODO: refactor to match closer to the semantics of rust counterpart for map().sum()
// Balance of dark and light modules
var dark int32
for _, mod := range q.modules {
dark += mathx.BoolToInt32(mod)
}
total := size * size // Note that size is odd, so dark/total != 1/2
// Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
k := (mathx.AbsInt32((dark*20-total*10))+total-1)/total - 1
result += k * PENALTY_N4
return result
}
/*---- Private helper functions ----*/
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
func (q QrCode) getAlignmentPatternPositions() []int32 {
ver := q.version.Value()
if ver == 1 {
return []int32{}
} else {
numalign := int32(ver)/7 + 2
var step int32
if ver == 32 {
step = 26
} else {
step = (int32(ver)*4 + numalign*2 + 1) / (numalign*2 - 2) * 2
}
result := make([]int32, numalign)
for i := int32(0); i < numalign-1; i++ {
result[i] = q.size - 7 - i*step
}
result[numalign-1] = 6
// TODO: refactor to match closer to the semantics of rust counterpart, reverse()
invertedResult := make([]int32, numalign)
for i, val := range result {
invertedResult[numalign-1-int32(i)] = val
}
return invertedResult
}
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
func getNumRawDataModules(v Version) uint {
ver := uint(v.Value())
result := (16*ver+128)*ver + 64
if ver >= 2 {
numalign := ver/7 + 2
result -= (25*numalign-10)*numalign - 55
if ver >= 7 {
result -= 36
}
}
if result < 208 || result > 29648 {
panic("result < 208 || result > 29648")
}
return result
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
func getNumDataCodewords(ver Version, ecl QrCodeEcc) uint {
return getNumRawDataModules(ver)/8 - tableGet(ECC_CODEWORDS_PER_BLOCK, ver, ecl)*tableGet(NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
}
// Returns an entry from the given table based on the given values.
func tableGet(table [4][41]int8, ver Version, ecl QrCodeEcc) uint {
return uint(table[ecl.Ordinal()][uint(ver.Value())])
}
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
func reedSolomonComputeDivisor(degree uint) []uint8 {
if degree < 1 || degree > 255 {
panic("Degree out of range")
}
// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
result := make([]uint8, degree-1)
result = append(result, 1) // Start off with the monomial x^0
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// and drop the highest monomial term which is always 1x^degree.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
root := uint8(1)
for i := uint(0); i < degree; i++ { // Unused variable i
// Multiply the current product by (x - r^i)
for j := uint(0); j < degree; j++ {
result[j] = reedSolomonMultiply(result[j], root)
if j+1 < uint(len(result)) {
result[j] ^= result[j+1]
}
}
root = reedSolomonMultiply(root, 0x02)
}
return result
}
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
func reedSolomonComputeRemainder(data []uint8, divisor []uint8) []uint8 {
result := make([]uint8, len(divisor))
for _, b := range data { // Polynomial division
var pop uint8
pop, result = result[0], result[1:]
factor := b ^ pop
result = append(result, 0)
// TODO: refactor to match closer to the semantics of rust counterpart, zip()
iterLen := mathx.MinInt(len(result), len(divisor))
for i := 0; i < iterLen; i++ {
// x := result[i]
y := divisor[i]
result[i] ^= reedSolomonMultiply(y, factor)
}
}
return result
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D).
// All inputs are valid. This could be implemented as a 256*256 lookup table.
func reedSolomonMultiply(x, y uint8) uint8 {
// Russian peasant multiplication
var z uint8
// TODO: refactor to match closer to the semantics of rust counterpart, rev()
for i := 7; i > -1; i-- {
z = (z << 1) ^ ((z >> 7) * 0x1D)
z ^= ((y >> i) & 1) * x
}
return z
}
/*---- Helper struct for get_penalty_score() ----*/
type finderPenalty struct {
qrSize int32
runHistory [7]int32
}
func newFinderPenalty(size int32) *finderPenalty {
return &finderPenalty{
qrSize: size,
runHistory: [7]int32{},
}
}
// Pushes the given value to the front and drops the last value.
func (p *finderPenalty) addHistory(currentrunlength int32) {
if p.runHistory[0] == 0 {
currentrunlength += p.qrSize // Add light border to initial run
}
rh := &p.runHistory
// TODO: refactor to match closer to the semantics of rust counterpart, rev()
for i := len(rh) - 1 - 1; i > -1; i-- {
p.runHistory[i+1] = rh[i]
}
rh[0] = currentrunlength
}
// Can only be called immediately after a light run is added, and returns either 0, 1, or 2.
func (p finderPenalty) countPatterns() int32 {
rh := p.runHistory
n := rh[1]
if n > p.qrSize*3 {
panic("n > p.qrSize*3")
}
core := n > 0 && rh[2] == n && rh[3] == n*3 && rh[4] == n && rh[5] == n
return mathx.BoolToInt32(core && rh[0] >= n*4 && rh[6] >= n) + mathx.BoolToInt32(core && rh[6] >= n*4 && rh[0] >= n)
}
// Must be called at the end of a line (row or column) of modules.
func (p *finderPenalty) terminateAndCount(currentruncolor bool, currentrunlength int32) int32 {
if currentruncolor { // Terminate dark run
p.addHistory(currentrunlength)
currentrunlength = 0
}
currentrunlength += p.qrSize // Add light border to final run
p.addHistory(currentrunlength)
return p.countPatterns()
}
/*---- Constants and tables ----*/
// For use in getPenaltyScore(), when evaluating which mask is best.
const (
PENALTY_N1 int32 = 3
PENALTY_N2 int32 = 3
PENALTY_N3 int32 = 40
PENALTY_N4 int32 = 10
)
var (
ECC_CODEWORDS_PER_BLOCK [4][41]int8 = [4][41]int8{
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
{-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low
{-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium
{-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile
{-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High
}
NUM_ERROR_CORRECTION_BLOCKS [4][41]int8 = [4][41]int8{
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
{-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low
{-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium
{-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile
{-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High
}
)

@ -0,0 +1,32 @@
package qrsegment
import "github.com/nayuki/qrcodegen/internal/bitx"
/*---- Bit buffer functionality ----*/
// BitBuffer is an appendable sequence of bits (0s and 1s).
//
// Mainly used by QrSegment.
type BitBuffer []bool
// AppendBits appends the given number of low-order bits of the given value to this buffer.
//
// Requires len &#x2264; 31 and val &lt; 2<sup>len</sup>.
func (b *BitBuffer) AppendBits(val uint32, len uint8) {
if len > 31 || (val>>len) != 0 {
panic("Value out of range")
}
// TODO: refactor to match closer to the semantics of rust counterpart, rev()
if len == 0 {
return
}
tmp := make([]bool, len)
for i := int32(len - 1); i > -1; i-- { // Append bit by bit
v := bitx.GetBit(val, i)
tmp[int32(len-1)-i] = v
}
res := append([]bool(*b), tmp...)
*b = BitBuffer(res)
}

@ -0,0 +1,59 @@
package qrsegment
import "github.com/nayuki/qrcodegen/version"
/*---- QrSegmentMode functionality ----*/
// QrSegmentMode describes how a segment's data bits are interpreted.
type QrSegmentMode uint32
const (
ModeNumeric QrSegmentMode = iota
ModeAlphanumeric
ModeByte
ModeKanji
ModeEci
)
// ModeBits returns an unsigned 4-bit integer value (range 0 to 15)
// representing the mode indicator bits for this mode object.
func (m QrSegmentMode) ModeBits() uint32 {
switch m {
case ModeNumeric:
return 0x1
case ModeAlphanumeric:
return 0x2
case ModeByte:
return 0x4
case ModeKanji:
return 0x8
case ModeEci:
return 0x7
default:
panic("unknown QrSegmentMode")
}
}
// NumCharCountBits returns the bit width of the character count field for a segment in this mode
// in a QR Code at the given version number. The result is in the range [0, 16].
func (m QrSegmentMode) NumCharCountBits(ver version.Version) uint8 {
var tmp [3]uint8
switch m {
case ModeNumeric:
tmp = [3]uint8{10, 12, 14}
case ModeAlphanumeric:
tmp = [3]uint8{9, 11, 13}
case ModeByte:
tmp = [3]uint8{8, 16, 16}
case ModeKanji:
tmp = [3]uint8{8, 10, 12}
case ModeEci:
tmp = [3]uint8{0, 0, 0}
default:
panic("unknown QrSegmentMode")
}
idx := (ver.Value() + 7) / 17
return tmp[idx]
}

@ -0,0 +1,260 @@
package qrsegment
import (
"github.com/nayuki/qrcodegen/version"
)
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
var (
ALPHANUMERIC_CHARSET = [45]rune{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
' ', '$', '%', '*', '+', '-', '.', '/', ':'}
alphanumericCharset = make(map[rune]int, 45)
)
func init() {
for i, c := range ALPHANUMERIC_CHARSET {
alphanumericCharset[c] = i
}
}
/*---- QrSegment functionality ----*/
// QrSegment is a segment of character/binary/control data in a QR Code symbol.
//
// Instances of this struct are immutable.
//
// The mid-level way to create a segment is to take the payload data
// and call a static factory function such as `QrSegment::make_numeric()`.
// The low-level way to create a segment is to custom-make the bit buffer
// and call the `QrSegment::new()` constructor with appropriate values.
//
// This segment struct imposes no length restrictions, but QR Codes have restrictions.
// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
// Any segment longer than this is meaningless for the purpose of generating QR Codes.
type QrSegment struct {
// The mode indicator of this segment. Accessed through mode().
mode QrSegmentMode
// The length of this segment's unencoded data. Measured in characters for
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
// Not the same as the data's bit length. Accessed through num_chars().
numchars uint
// The data bits of this segment. Accessed through data().
data []bool
}
/*---- Static factory functions (mid level) ----*/
// MakeBytes returns a segment representing the given binary data encoded in byte mode.
//
// All input byte slices are acceptable.
//
// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment.
func MakeBytes(data []uint8) QrSegment {
bb := make(BitBuffer, 0, len(data)*8)
for _, b := range data {
bb.AppendBits(uint32(b), 8)
}
return QrSegment{
mode: ModeByte,
numchars: uint(len(data)),
data: bb,
}
}
// MakeNumeric returns a segment representing the given string of decimal digits encoded in numeric mode.
//
// Panics if the string contains non-digit characters.
func MakeNumeric(text []rune) QrSegment {
bb := make(BitBuffer, 0, len(text)*3+(len(text)+2)/3)
var accumdata uint32
var accumcount uint8
for _, c := range text {
if '0' > c || c > '9' {
panic("String contains non-numeric characters")
}
accumdata = accumdata*10 + uint32(c) - uint32('0')
accumcount += 1
if accumcount == 3 {
bb.AppendBits(accumdata, 10)
accumdata = 0
accumcount = 0
}
}
if accumcount > 0 { // 1 or 2 digits remaining
bb.AppendBits(accumdata, accumcount*3+1)
}
return QrSegment{
mode: ModeNumeric,
numchars: uint(len(text)),
data: bb,
}
}
// MakeAlphanumeric returns a segment representing the given text string encoded in alphanumeric mode.
//
// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
//
// Panics if the string contains non-encodable characters.
func MakeAlphanumeric(text []rune) QrSegment {
bb := make(BitBuffer, 0, len(text)*5+(len(text)+1)/2)
var accumdata uint32
var accumcount uint32
for _, c := range text {
idx, ok := alphanumericCharset[c]
if !ok {
panic("String contains unencodable characters in alphanumeric mode")
}
accumdata = accumdata*45 + uint32(idx)
accumcount += 1
if accumcount == 2 {
bb.AppendBits(accumdata, 11)
accumdata = 0
accumcount = 0
}
}
if accumcount > 0 { // 1 character remaining
bb.AppendBits(accumdata, 6)
}
return QrSegment{
mode: ModeAlphanumeric,
numchars: uint(len(text)),
data: bb,
}
}
// MakeSegments returns a list of zero or more segments to represent the given Unicode text string.
//
// The result may use various segment modes and switch
// modes to optimize the length of the bit stream.
func MakeSegments(text []rune) []QrSegment {
if len(text) == 0 {
return []QrSegment{}
}
var seg QrSegment
if IsNumeric(text) {
seg = MakeNumeric(text)
} else if IsAlphanumeric(text) {
seg = MakeAlphanumeric(text)
} else {
seg = MakeBytes([]byte(string(text)))
}
return []QrSegment{seg}
}
// MakeEci returns a segment representing an Extended Channel Interpretation
// (ECI) designator with the given assignment value.
func MakeEci(assignval uint32) QrSegment {
bb := make(BitBuffer, 0, 24)
if assignval < (1 << 7) {
bb.AppendBits(assignval, 0)
} else if assignval < (1 << 14) {
bb.AppendBits(2, 2)
bb.AppendBits(assignval, 14)
} else if assignval < 1_000_000 {
bb.AppendBits(6, 3)
bb.AppendBits(assignval, 21)
} else {
panic("ECI assignment value out of range")
}
return QrSegment{
mode: ModeEci,
numchars: 0,
data: bb,
}
}
/*---- Constructor (low level) ----*/
// New creates a new QR Code segment with the given attributes and data.
//
// The character count (numchars) must agree with the mode and
// the bit buffer length, but the constraint isn't checked.
func New(mode QrSegmentMode, numchars uint, data []bool) QrSegment {
return QrSegment{
mode: mode,
numchars: numchars,
data: data,
}
}
/*---- Instance field getters ----*/
// Mode returns the mode indicator of this segment.
func (s QrSegment) Mode() QrSegmentMode {
return s.mode
}
// NumChars returns the character count field of this segment.
func (s QrSegment) NumChars() uint {
return s.numchars
}
// Data returns the data bits of this segment.
func (s QrSegment) Data() []bool {
return s.data
}
/*---- Other static functions ----*/
// GetTotalBits calculates and returns the number of bits needed to encode the given
// segments at the given version. The result is None if a segment has too many
// characters to fit its length field, or the total bits exceeds usize::MAX.
func GetTotalBits(segs []QrSegment, ver version.Version) *uint {
var result uint
for _, seg := range segs {
ccbits := seg.mode.NumCharCountBits(ver)
// TODO: refactor to match closer to the semantics of rust counterpart to check overflow
// // ccbits can be as large as 16, but usize can be as small as 16
// if let Some(limit) = 1usize.checked_shl(u32::from(ccbits)) {
// if seg.numchars >= limit {
// return None; // The segment's length doesn't fit the field's bit width
// }
// }
limit := uint(1) << ccbits
if seg.numchars >= limit {
return nil // The segment's length doesn't fit the field's bit width
}
result += 4 + uint(ccbits)
result += uint(len(seg.data))
}
return &result
}
// IsNumeric tests whether the given string can be encoded as a segment in numeric mode.
//
// A string is encodable iff each character is in the range 0 to 9.
func IsNumeric(text []rune) bool {
for _, c := range text {
if c < '0' || c > '9' {
return false
}
}
return true
}
// IsAlphanumeric tests whether the given string can be encoded as a segment in alphanumeric mode.
//
// A string is encodable iff each character is in the following set: 0 to 9, A to Z
// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
func IsAlphanumeric(text []rune) bool {
for _, c := range text {
_, ok := alphanumericCharset[c]
if !ok {
return false
}
}
return true
}

@ -0,0 +1,27 @@
package version
// Version is a number between 1 and 40 (inclusive).
type Version uint8
const (
// Min is the minimum version number supported in the QR Code Model 2 standard.
Min = Version(1)
// Max is the maximum version number supported in the QR Code Model 2 standard.
Max = Version(40)
)
// New creates a version object from the given number.
//
// Panics if the number is outside the range [1, 40].
func New(ver uint8) Version {
if ver < uint8(Min) || ver > uint8(Max) {
panic("Version number out of range")
}
return Version(ver)
}
// Value returns the value, which is in the range [1, 40].
func (v Version) Value() uint8 {
return uint8(v)
}
Loading…
Cancel
Save