Updated private Python functions to operate on bytes instead of lists of integers, thus conveying the constrained value range more clearly.

pull/118/head
Project Nayuki 4 years ago
parent e5d21aee09
commit 83300fd619

@ -159,7 +159,7 @@ class QrCode:
bb.append_bits(padbyte, 8) bb.append_bits(padbyte, 8)
# Pack bits into bytes in big endian # Pack bits into bytes in big endian
datacodewords = [0] * (len(bb) // 8) datacodewords = bytearray([0] * (len(bb) // 8))
for (i, bit) in enumerate(bb): for (i, bit) in enumerate(bb):
datacodewords[i >> 3] |= bit << (7 - (i & 7)) datacodewords[i >> 3] |= bit << (7 - (i & 7))
@ -219,7 +219,7 @@ class QrCode:
# Compute ECC, draw modules # Compute ECC, draw modules
self._draw_function_patterns() self._draw_function_patterns()
allcodewords = self._add_ecc_and_interleave(list(datacodewords)) allcodewords = self._add_ecc_and_interleave(bytearray(datacodewords))
self._draw_codewords(allcodewords) self._draw_codewords(allcodewords)
# Do masking # Do masking
@ -394,7 +394,7 @@ class QrCode:
# ---- Private helper methods for constructor: Codewords and masking ---- # ---- Private helper methods for constructor: Codewords and masking ----
def _add_ecc_and_interleave(self, data: List[int]) -> List[int]: def _add_ecc_and_interleave(self, data: bytearray) -> bytes:
"""Returns a new byte string representing the given data with the appropriate error correction """Returns a new byte string representing the given data with the appropriate error correction
codewords appended to it, based on this object's version and error correction level.""" codewords appended to it, based on this object's version and error correction level."""
version = self._version version = self._version
@ -421,7 +421,7 @@ class QrCode:
assert k == len(data) assert k == len(data)
# Interleave (not concatenate) the bytes from every block into a single sequence # Interleave (not concatenate) the bytes from every block into a single sequence
result = [] result = bytearray()
for i in range(len(blocks[0])): for i in range(len(blocks[0])):
for (j, blk) in enumerate(blocks): for (j, blk) in enumerate(blocks):
# Skip the padding byte in short blocks # Skip the padding byte in short blocks
@ -431,7 +431,7 @@ class QrCode:
return result return result
def _draw_codewords(self, data: List[int]) -> None: def _draw_codewords(self, data: bytes) -> None:
"""Draws the given sequence of 8-bit codewords (data and error correction) onto the entire """Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
data area of this QR Code. Function modules need to be marked off before this is called.""" data area of this QR Code. Function modules need to be marked off before this is called."""
assert len(data) == QrCode._get_num_raw_data_modules(self._version) // 8 assert len(data) == QrCode._get_num_raw_data_modules(self._version) // 8
@ -574,14 +574,14 @@ class QrCode:
@staticmethod @staticmethod
def _reed_solomon_compute_divisor(degree: int) -> List[int]: def _reed_solomon_compute_divisor(degree: int) -> bytes:
"""Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be """Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
implemented as a lookup table over all possible parameter values, instead of as an algorithm.""" implemented as a lookup table over all possible parameter values, instead of as an algorithm."""
if not (1 <= degree <= 255): if not (1 <= degree <= 255):
raise ValueError("Degree out of range") raise ValueError("Degree out of range")
# Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. # Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
# For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. # For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
result = [0] * (degree - 1) + [1] # Start off with the monomial x^0 result = bytearray([0] * (degree - 1) + [1]) # Start off with the monomial x^0
# Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), # Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
# and drop the highest monomial term which is always 1x^degree. # and drop the highest monomial term which is always 1x^degree.
@ -598,9 +598,9 @@ class QrCode:
@staticmethod @staticmethod
def _reed_solomon_compute_remainder(data: List[int], divisor: List[int]) -> List[int]: def _reed_solomon_compute_remainder(data: bytes, divisor: bytes) -> bytes:
"""Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.""" """Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials."""
result = [0] * len(divisor) result = bytearray([0] * len(divisor))
for b in data: # Polynomial division for b in data: # Polynomial division
factor = b ^ result.pop(0) factor = b ^ result.pop(0)
result.append(0) result.append(0)

Loading…
Cancel
Save