|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import argparse
|
|
|
import os
|
|
|
import re
|
|
|
from pathlib import Path
|
|
|
from typing import Dict
|
|
|
from typing import List
|
|
|
from typing import Union
|
|
|
|
|
|
DICT_EN = 'tools/aligner/cmudict-0.7b'
|
|
|
DICT_ZH = 'tools/aligner/simple.lexicon'
|
|
|
MODEL_DIR_EN = 'tools/aligner/vctk_model.zip'
|
|
|
MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip'
|
|
|
MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml'
|
|
|
MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml'
|
|
|
MFA_PATH = 'tools/montreal-forced-aligner/bin'
|
|
|
os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH']
|
|
|
|
|
|
|
|
|
def check_phone(label_file: Union[str, Path],
|
|
|
pronunciation_phones: Dict[str, str],
|
|
|
mfa_phones: List[str],
|
|
|
am_phones: List[str],
|
|
|
oov_record: str="./oov_info.txt",
|
|
|
lang: str="zh"):
|
|
|
"""Check whether the phoneme corresponding to the audio text content
|
|
|
is in the phoneme list of the pretrained mfa model to ensure that the alignment is normal.
|
|
|
Check whether the phoneme corresponding to the audio text content
|
|
|
is in the phoneme list of the pretrained am model to ensure finetune (normalize) is normal.
|
|
|
|
|
|
Args:
|
|
|
label_file (Union[str, Path]): label file, format: utt_id|phone seq
|
|
|
pronunciation_phones (dict): pronunciation to phones map dict
|
|
|
mfa_phones (list): the phone list of pretrained mfa model
|
|
|
am_phones (list): the phone list of pretrained mfa model
|
|
|
|
|
|
Returns:
|
|
|
oov_words (list): oov words
|
|
|
oov_files (list): utt id list that exist oov
|
|
|
oov_file_words (dict): the oov file and oov phone in this file
|
|
|
"""
|
|
|
oov_words = []
|
|
|
oov_files = []
|
|
|
oov_file_words = {}
|
|
|
|
|
|
with open(label_file, "r") as f:
|
|
|
for line in f.readlines():
|
|
|
utt_id = line.split("|")[0]
|
|
|
transcription = line.strip().split("|")[1]
|
|
|
transcription = re.sub(
|
|
|
r'[:、,;。?!,.:;"?!”’《》【】<=>{}()()#&@“”^_|…\\]', '',
|
|
|
transcription)
|
|
|
if lang == "en":
|
|
|
transcription = transcription.upper()
|
|
|
flag = 0
|
|
|
temp_oov_words = []
|
|
|
for word in transcription.split(" "):
|
|
|
if word not in pronunciation_phones.keys():
|
|
|
temp_oov_words.append(word)
|
|
|
flag = 1
|
|
|
if word not in oov_words:
|
|
|
oov_words.append(word)
|
|
|
else:
|
|
|
for p in pronunciation_phones[word]:
|
|
|
if p not in mfa_phones or p not in am_phones:
|
|
|
temp_oov_words.append(word)
|
|
|
flag = 1
|
|
|
if word not in oov_words:
|
|
|
oov_words.append(word)
|
|
|
if flag == 1:
|
|
|
oov_files.append(utt_id)
|
|
|
oov_file_words[utt_id] = temp_oov_words
|
|
|
|
|
|
if oov_record is not None:
|
|
|
with open(oov_record, "w") as fw:
|
|
|
fw.write("oov_words: " + str(oov_words) + "\n")
|
|
|
fw.write("oov_files: " + str(oov_files) + "\n")
|
|
|
fw.write("oov_file_words: " + str(oov_file_words) + "\n")
|
|
|
|
|
|
return oov_words, oov_files, oov_file_words
|
|
|
|
|
|
|
|
|
def get_pronunciation_phones(lexicon_file: Union[str, Path]):
|
|
|
# pronunciation to phones
|
|
|
pronunciation_phones = {}
|
|
|
with open(lexicon_file, "r") as f2:
|
|
|
for line in f2.readlines():
|
|
|
line_list = line.strip().split(" ")
|
|
|
pronunciation = line_list[0]
|
|
|
if line_list[1] == '':
|
|
|
phones = line_list[2:]
|
|
|
else:
|
|
|
phones = line_list[1:]
|
|
|
pronunciation_phones[pronunciation] = phones
|
|
|
|
|
|
return pronunciation_phones
|
|
|
|
|
|
|
|
|
def get_mfa_phone(mfa_phone_file: Union[str, Path]):
|
|
|
# get phones from pretrained mfa model (meta.yaml)
|
|
|
mfa_phones = []
|
|
|
with open(mfa_phone_file, "r") as f:
|
|
|
for line in f.readlines():
|
|
|
if line.startswith("-"):
|
|
|
phone = line.strip().split(" ")[-1]
|
|
|
mfa_phones.append(phone)
|
|
|
|
|
|
return mfa_phones
|
|
|
|
|
|
|
|
|
def get_am_phone(am_phone_file: Union[str, Path]):
|
|
|
# get phones from pretrained am model (phone_id_map.txt)
|
|
|
am_phones = []
|
|
|
with open(am_phone_file, "r") as f:
|
|
|
for line in f.readlines():
|
|
|
phone = line.strip().split(" ")[0]
|
|
|
am_phones.append(phone)
|
|
|
|
|
|
return am_phones
|
|
|
|
|
|
|
|
|
def get_check_result(label_file: Union[str, Path],
|
|
|
am_phone_file: Union[str, Path],
|
|
|
input_dir: Union[str, Path],
|
|
|
newdir_name: str="newdir",
|
|
|
lang: str="zh"):
|
|
|
"""Check if there is any audio in the input that contains the oov word according to label_file.
|
|
|
Copy audio that does not contain oov word to input_dir / newdir_name.
|
|
|
Generate label file and save to input_dir / newdir_name.
|
|
|
|
|
|
|
|
|
Args:
|
|
|
label_file (Union[str, Path]): input audio label file, format: utt|pronunciation
|
|
|
am_phone_file (Union[str, Path]): pretrained am model phone file
|
|
|
input_dir (Union[str, Path]): input dir
|
|
|
newdir_name (str): directory name saved after checking oov
|
|
|
lang (str): input audio language
|
|
|
"""
|
|
|
|
|
|
if lang == 'en':
|
|
|
lexicon_file = DICT_EN
|
|
|
mfa_phone_file = MFA_PHONE_EN
|
|
|
elif lang == 'zh':
|
|
|
lexicon_file = DICT_ZH
|
|
|
mfa_phone_file = MFA_PHONE_ZH
|
|
|
else:
|
|
|
print('please input right lang!!')
|
|
|
|
|
|
pronunciation_phones = get_pronunciation_phones(lexicon_file)
|
|
|
mfa_phones = get_mfa_phone(mfa_phone_file)
|
|
|
am_phones = get_am_phone(am_phone_file)
|
|
|
oov_words, oov_files, oov_file_words = check_phone(
|
|
|
label_file=label_file,
|
|
|
pronunciation_phones=pronunciation_phones,
|
|
|
mfa_phones=mfa_phones,
|
|
|
am_phones=am_phones,
|
|
|
oov_record="./oov_info.txt",
|
|
|
lang=lang)
|
|
|
|
|
|
input_dir = Path(input_dir).expanduser()
|
|
|
new_dir = input_dir / newdir_name
|
|
|
new_dir.mkdir(parents=True, exist_ok=True)
|
|
|
with open(label_file, "r") as f:
|
|
|
for line in f.readlines():
|
|
|
utt_id = line.split("|")[0]
|
|
|
if utt_id not in oov_files:
|
|
|
transcription = line.split("|")[1].strip()
|
|
|
wav_file = str(input_dir) + "/" + utt_id + ".wav"
|
|
|
new_wav_file = str(new_dir) + "/" + utt_id + ".wav"
|
|
|
os.system("cp %s %s" % (wav_file, new_wav_file))
|
|
|
single_file = str(new_dir) + "/" + utt_id + ".txt"
|
|
|
with open(single_file, "w") as fw:
|
|
|
fw.write(transcription)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
# parse config and args
|
|
|
parser = argparse.ArgumentParser(
|
|
|
description="Preprocess audio and then extract features.")
|
|
|
|
|
|
parser.add_argument(
|
|
|
"--input_dir",
|
|
|
type=str,
|
|
|
default="./input/csmsc_mini",
|
|
|
help="directory containing audio and label file")
|
|
|
|
|
|
parser.add_argument(
|
|
|
"--pretrained_model_dir",
|
|
|
type=str,
|
|
|
default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0",
|
|
|
help="Path to pretrained model")
|
|
|
|
|
|
parser.add_argument(
|
|
|
"--newdir_name",
|
|
|
type=str,
|
|
|
default="newdir",
|
|
|
help="directory name saved after checking oov")
|
|
|
|
|
|
parser.add_argument(
|
|
|
'--lang',
|
|
|
type=str,
|
|
|
default='zh',
|
|
|
choices=['zh', 'en'],
|
|
|
help='Choose input audio language. zh or en')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
# if args.lang == 'en':
|
|
|
# lexicon_file = DICT_EN
|
|
|
# mfa_phone_file = MFA_PHONE_EN
|
|
|
# elif args.lang == 'zh':
|
|
|
# lexicon_file = DICT_ZH
|
|
|
# mfa_phone_file = MFA_PHONE_ZH
|
|
|
# else:
|
|
|
# print('please input right lang!!')
|
|
|
assert args.lang == "zh" or args.lang == "en", "please input right lang! zh or en"
|
|
|
|
|
|
input_dir = Path(args.input_dir).expanduser()
|
|
|
pretrained_model_dir = Path(args.pretrained_model_dir).expanduser()
|
|
|
am_phone_file = pretrained_model_dir / "phone_id_map.txt"
|
|
|
label_file = input_dir / "labels.txt"
|
|
|
|
|
|
get_check_result(
|
|
|
label_file=label_file,
|
|
|
am_phone_file=am_phone_file,
|
|
|
input_dir=input_dir,
|
|
|
newdir_name=args.newdir_name,
|
|
|
lang=args.lang)
|