You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/exps/u2/bin/quant.py

205 lines
7.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantzation U2 model."""
import paddle
from kaldiio import ReadHelper
from paddleslim import PTQ
from yacs.config import CfgNode
from paddlespeech.audio.transform.transformation import Transformation
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.models.u2 import U2Model
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import UpdateConfig
logger = Log(__name__).getlog()
class U2Infer():
def __init__(self, config, args):
self.args = args
self.config = config
self.audio_scp = args.audio_scp
self.preprocess_conf = config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
self.text_feature = TextFeaturizer(
unit_type=config.unit_type,
vocab=config.vocab_filepath,
spm_model_prefix=config.spm_model_prefix)
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
# model
model_conf = config
with UpdateConfig(model_conf):
model_conf.input_dim = config.feat_dim
model_conf.output_dim = self.text_feature.vocab_size
model = U2Model.from_config(model_conf)
self.model = model
self.model.eval()
self.ptq = PTQ()
self.model = self.ptq.quantize(model)
# load model
params_path = self.args.checkpoint_path + ".pdparams"
model_dict = paddle.load(params_path)
self.model.set_state_dict(model_dict)
def run(self):
cnt = 0
with ReadHelper(f"scp:{self.audio_scp}") as reader:
for key, (rate, audio) in reader:
assert rate == 16000
cnt += 1
if cnt > args.num_utts:
break
with paddle.no_grad():
logger.info(f"audio shape: {audio.shape}")
# fbank
feat = self.preprocessing(audio, **self.preprocess_args)
logger.info(f"feat shape: {feat.shape}")
ilen = paddle.to_tensor(feat.shape[0])
xs = paddle.to_tensor(feat, dtype='float32').unsqueeze(0)
decode_config = self.config.decode
logger.info(f"decode cfg: {decode_config}")
result_transcripts = self.model.decode(
xs,
ilen,
text_feature=self.text_feature,
decoding_method=decode_config.decoding_method,
beam_size=decode_config.beam_size,
ctc_weight=decode_config.ctc_weight,
decoding_chunk_size=decode_config.decoding_chunk_size,
num_decoding_left_chunks=decode_config.
num_decoding_left_chunks,
simulate_streaming=decode_config.simulate_streaming,
reverse_weight=decode_config.reverse_weight)
rsl = result_transcripts[0][0]
utt = key
logger.info(f"hyp: {utt} {rsl}")
# print(self.model)
# print(self.model.forward_encoder_chunk)
logger.info("-------------start quant ----------------------")
batch_size = 1
feat_dim = 80
model_size = 512
num_left_chunks = -1
reverse_weight = 0.3
logger.info(
f"U2 Export Model Params: batch_size {batch_size}, feat_dim {feat_dim}, model_size {model_size}, num_left_chunks {num_left_chunks}, reverse_weight {reverse_weight}"
)
# ######################## self.model.forward_encoder_chunk ############
# input_spec = [
# # (T,), int16
# paddle.static.InputSpec(shape=[None], dtype='int16'),
# ]
# self.model.forward_feature = paddle.jit.to_static(
# self.model.forward_feature, input_spec=input_spec)
######################### self.model.forward_encoder_chunk ############
input_spec = [
# xs, (B, T, D)
paddle.static.InputSpec(
shape=[batch_size, None, feat_dim], dtype='float32'),
# offset, int, but need be tensor
paddle.static.InputSpec(shape=[1], dtype='int32'),
# required_cache_size, int
num_left_chunks,
# att_cache
paddle.static.InputSpec(
shape=[None, None, None, None], dtype='float32'),
# cnn_cache
paddle.static.InputSpec(
shape=[None, None, None, None], dtype='float32')
]
self.model.forward_encoder_chunk = paddle.jit.to_static(
self.model.forward_encoder_chunk, input_spec=input_spec)
######################### self.model.ctc_activation ########################
input_spec = [
# encoder_out, (B,T,D)
paddle.static.InputSpec(
shape=[batch_size, None, model_size], dtype='float32')
]
self.model.ctc_activation = paddle.jit.to_static(
self.model.ctc_activation, input_spec=input_spec)
######################### self.model.forward_attention_decoder ########################
input_spec = [
# hyps, (B, U)
paddle.static.InputSpec(shape=[None, None], dtype='int64'),
# hyps_lens, (B,)
paddle.static.InputSpec(shape=[None], dtype='int64'),
# encoder_out, (B,T,D)
paddle.static.InputSpec(
shape=[batch_size, None, model_size], dtype='float32'),
reverse_weight
]
self.model.forward_attention_decoder = paddle.jit.to_static(
self.model.forward_attention_decoder, input_spec=input_spec)
################################################################################
# jit save
logger.info(f"export save: {self.args.export_path}")
self.ptq.ptq._convert(self.model)
paddle.jit.save(
self.model,
self.args.export_path,
combine_params=True,
skip_forward=True)
def main(config, args):
U2Infer(config, args).run()
if __name__ == "__main__":
parser = default_argument_parser()
# save asr result to
parser.add_argument(
"--result_file", type=str, help="path of save the asr result")
parser.add_argument(
"--audio_scp", type=str, help="path of the input audio file")
parser.add_argument(
"--num_utts",
type=int,
default=200,
help="num utts for quant calibrition.")
parser.add_argument(
"--export_path",
type=str,
default='export.jit.quant',
help="path of the input audio file")
args = parser.parse_args()
config = CfgNode(new_allowed=True)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
main(config, args)