You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/librispeech/s2/conf/transformer.yaml

102 lines
3.0 KiB

# https://yaml.org/type/float.html
# network architecture
model:
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: batch
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
collator:
vocab_filepath: data/lang_char/train_960_unigram5000_units.txt
unit_type: spm
spm_model_prefix: data/lang_char/train_960_unigram5000
feat_dim: 83
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/augmentation.json
num_workers: 0
subsampling_factor: 1
num_encs: 1
training:
n_epoch: 120
accum_grad: 2
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
optim: adam
optim_conf:
global_grad_clip: 5.0
weight_decay: 1.0e-06
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
lr: 0.004
warmup_steps: 25000
lr_decay: 1.0
decoding:
batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.