You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/utils/compute-wer.py

555 lines
20 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# CopyRight WeNet Apache-2.0 License
import codecs
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
if __name__ == '__main__':
if len(sys.argv) == 1:
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)