You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/cli/text/infer.py

271 lines
9.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
from collections import OrderedDict
from typing import List
from typing import Optional
from typing import Union
import paddle
from ...s2t.utils.dynamic_import import dynamic_import
from ..executor import BaseExecutor
from ..log import logger
from ..utils import cli_register
from ..utils import stats_wrapper
from .pretrained_models import model_alias
from .pretrained_models import pretrained_models
from .pretrained_models import tokenizer_alias
__all__ = ['TextExecutor']
@cli_register(name='paddlespeech.text', description='Text infer command.')
class TextExecutor(BaseExecutor):
def __init__(self):
super().__init__()
self.model_alias = model_alias
self.pretrained_models = pretrained_models
self.tokenizer_alias = tokenizer_alias
self.parser = argparse.ArgumentParser(
prog='paddlespeech.text', add_help=True)
self.parser.add_argument(
'--input', type=str, default=None, help='Input text.')
self.parser.add_argument(
'--task',
type=str,
default='punc',
choices=['punc'],
help='Choose text task.')
self.parser.add_argument(
'--model',
type=str,
default='ernie_linear_p7_wudao',
choices=[
tag[:tag.index('-')] for tag in self.pretrained_models.keys()
],
help='Choose model type of text task.')
self.parser.add_argument(
'--lang',
type=str,
default='zh',
choices=['zh', 'en'],
help='Choose model language.')
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of cls task. Use deault config when it is None.')
self.parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help='Checkpoint file of model.')
self.parser.add_argument(
'--punc_vocab',
type=str,
default=None,
help='Vocabulary file of punctuation restoration task.')
self.parser.add_argument(
'--device',
type=str,
default=paddle.get_device(),
help='Choose device to execute model inference.')
self.parser.add_argument(
'-d',
'--job_dump_result',
action='store_true',
help='Save job result into file.')
self.parser.add_argument(
'-v',
'--verbose',
action='store_true',
help='Increase logger verbosity of current task.')
def _init_from_path(self,
task: str='punc',
model_type: str='ernie_linear_p7_wudao',
lang: str='zh',
cfg_path: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None,
vocab_file: Optional[os.PathLike]=None):
"""
Init model and other resources from a specific path.
"""
if hasattr(self, 'model'):
logger.info('Model had been initialized.')
return
self.task = task
if cfg_path is None or ckpt_path is None or vocab_file is None:
tag = '-'.join([model_type, task, lang])
self.res_path = self._get_pretrained_path(tag)
self.cfg_path = os.path.join(
self.res_path, self.pretrained_models[tag]['cfg_path'])
self.ckpt_path = os.path.join(
self.res_path, self.pretrained_models[tag]['ckpt_path'])
self.vocab_file = os.path.join(
self.res_path, self.pretrained_models[tag]['vocab_file'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.ckpt_path = os.path.abspath(ckpt_path)
self.vocab_file = os.path.abspath(vocab_file)
model_name = model_type[:model_type.rindex('_')]
if self.task == 'punc':
# punc list
self._punc_list = []
with open(self.vocab_file, 'r') as f:
for line in f:
self._punc_list.append(line.strip())
# model
model_class = dynamic_import(model_name, self.model_alias)
tokenizer_class = dynamic_import(model_name, self.tokenizer_alias)
self.model = model_class(
cfg_path=self.cfg_path, ckpt_path=self.ckpt_path)
self.tokenizer = tokenizer_class.from_pretrained('ernie-1.0')
else:
raise NotImplementedError
self.model.eval()
def _clean_text(self, text):
text = text.lower()
text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text)
text = re.sub(f'[{"".join([p for p in self._punc_list][1:])}]', '',
text)
return text
def preprocess(self, text: Union[str, os.PathLike]):
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
"""
if self.task == 'punc':
clean_text = self._clean_text(text)
assert len(clean_text) > 0, f'Invalid input string: {text}'
tokenized_input = self.tokenizer(
list(clean_text), return_length=True, is_split_into_words=True)
self._inputs['input_ids'] = tokenized_input['input_ids']
self._inputs['seg_ids'] = tokenized_input['token_type_ids']
self._inputs['seq_len'] = tokenized_input['seq_len']
else:
raise NotImplementedError
@paddle.no_grad()
def infer(self):
"""
Model inference and result stored in self.output.
"""
if self.task == 'punc':
input_ids = paddle.to_tensor(self._inputs['input_ids']).unsqueeze(0)
seg_ids = paddle.to_tensor(self._inputs['seg_ids']).unsqueeze(0)
logits, _ = self.model(input_ids, seg_ids)
preds = paddle.argmax(logits, axis=-1).squeeze(0)
self._outputs['preds'] = preds
else:
raise NotImplementedError
def postprocess(self) -> Union[str, os.PathLike]:
"""
Output postprocess and return human-readable results such as texts and audio files.
"""
if self.task == 'punc':
input_ids = self._inputs['input_ids']
seq_len = self._inputs['seq_len']
preds = self._outputs['preds']
tokens = self.tokenizer.convert_ids_to_tokens(
input_ids[1:seq_len - 1])
labels = preds[1:seq_len - 1].tolist()
assert len(tokens) == len(labels)
text = ''
for t, l in zip(tokens, labels):
text += t
if l != 0: # Non punc.
text += self._punc_list[l]
return text
else:
raise NotImplementedError
def execute(self, argv: List[str]) -> bool:
"""
Command line entry.
"""
parser_args = self.parser.parse_args(argv)
task = parser_args.task
model_type = parser_args.model
lang = parser_args.lang
cfg_path = parser_args.config
ckpt_path = parser_args.ckpt_path
punc_vocab = parser_args.punc_vocab
device = parser_args.device
if not parser_args.verbose:
self.disable_task_loggers()
task_source = self.get_task_source(parser_args.input)
task_results = OrderedDict()
has_exceptions = False
for id_, input_ in task_source.items():
try:
res = self(input_, task, model_type, lang, cfg_path, ckpt_path,
punc_vocab, device)
task_results[id_] = res
except Exception as e:
has_exceptions = True
task_results[id_] = f'{e.__class__.__name__}: {e}'
self.process_task_results(parser_args.input, task_results,
parser_args.job_dump_result)
if has_exceptions:
return False
else:
return True
@stats_wrapper
def __call__(
self,
text: str,
task: str='punc',
model: str='ernie_linear_p7_wudao',
lang: str='zh',
config: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None,
punc_vocab: Optional[os.PathLike]=None,
device: str=paddle.get_device(), ):
"""
Python API to call an executor.
"""
paddle.set_device(device)
self._init_from_path(task, model, lang, config, ckpt_path, punc_vocab)
self.preprocess(text)
self.infer()
res = self.postprocess() # Retrieve result of text task.
return res