You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
499 lines
18 KiB
499 lines
18 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
import time
|
|
from collections import OrderedDict
|
|
from contextlib import contextmanager
|
|
from pathlib import Path
|
|
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
world_size = dist.get_world_size()
|
|
if world_size > 1:
|
|
dist.init_parallel_env()
|
|
|
|
from visualdl import LogWriter
|
|
|
|
from paddlespeech.s2t.training.reporter import ObsScope
|
|
from paddlespeech.s2t.training.reporter import report
|
|
from paddlespeech.s2t.training.timer import Timer
|
|
from paddlespeech.s2t.utils import mp_tools
|
|
from paddlespeech.s2t.utils import profiler
|
|
from paddlespeech.s2t.utils.checkpoint import Checkpoint
|
|
from paddlespeech.s2t.utils.log import Log
|
|
from paddlespeech.s2t.utils.utility import all_version
|
|
from paddlespeech.s2t.utils.utility import seed_all
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
__all__ = ["Trainer"]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class Trainer():
|
|
"""
|
|
An experiment template in order to structure the training code and take
|
|
care of saving, loading, logging, visualization stuffs. It's intended to
|
|
be flexible and simple.
|
|
|
|
So it only handles output directory (create directory for the output,
|
|
create a checkpoint directory, dump the config in use and create
|
|
visualizer and logger) in a standard way without enforcing any
|
|
input-output protocols to the model and dataloader. It leaves the main
|
|
part for the user to implement their own (setup the model, criterion,
|
|
optimizer, define a training step, define a validation function and
|
|
customize all the text and visual logs).
|
|
It does not save too much boilerplate code. The users still have to write
|
|
the forward/backward/update mannually, but they are free to add
|
|
non-standard behaviors if needed.
|
|
We have some conventions to follow.
|
|
1. Experiment should have ``model``, ``optimizer``, ``train_loader`` and
|
|
``valid_loader``, ``config`` and ``args`` attributes.
|
|
2. The config should have a ``training`` field, which has
|
|
``valid_interval``, ``save_interval`` and ``max_iteration`` keys. It is
|
|
used as the trigger to invoke validation, checkpointing and stop of the
|
|
experiment.
|
|
3. There are four methods, namely ``train_batch``, ``valid``,
|
|
``setup_model`` and ``setup_dataloader`` that should be implemented.
|
|
Feel free to add/overwrite other methods and standalone functions if you
|
|
need.
|
|
|
|
Parameters
|
|
----------
|
|
config: yacs.config.CfgNode
|
|
The configuration used for the experiment.
|
|
|
|
args: argparse.Namespace
|
|
The parsed command line arguments.
|
|
Examples
|
|
--------
|
|
>>> def main_sp(config, args):
|
|
>>> exp = Trainer(config, args)
|
|
>>> exp.setup()
|
|
>>> exp.run()
|
|
>>>
|
|
>>> config = get_cfg_defaults()
|
|
>>> parser = default_argument_parser()
|
|
>>> args = parser.parse_args()
|
|
>>> if args.config:
|
|
>>> config.merge_from_file(args.config)
|
|
>>> if args.opts:
|
|
>>> config.merge_from_list(args.opts)
|
|
>>> config.freeze()
|
|
>>>
|
|
>>> if args.ngpu > 1:
|
|
>>> dist.spawn(main_sp, args=(config, args), nprocs=args.ngpu)
|
|
>>> else:
|
|
>>> main_sp(config, args)
|
|
"""
|
|
|
|
def __init__(self, config, args):
|
|
self.config = config
|
|
self.args = args
|
|
self.optimizer = None
|
|
self.visualizer = None
|
|
self.output_dir = None
|
|
self.checkpoint_dir = None
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
self.rank = dist.get_rank()
|
|
self.world_size = dist.get_world_size()
|
|
self._train = True
|
|
|
|
# print deps version
|
|
all_version()
|
|
logger.info(f"Rank: {self.rank}/{self.world_size}")
|
|
|
|
# set device
|
|
if self.args.ngpu == 0:
|
|
if self.args.nxpu == 0:
|
|
paddle.set_device('cpu')
|
|
else:
|
|
paddle.set_device('xpu')
|
|
elif self.args.ngpu > 0:
|
|
paddle.set_device("gpu")
|
|
else:
|
|
raise Exception("invalid device")
|
|
|
|
self.checkpoint = Checkpoint(
|
|
kbest_n=self.config.checkpoint.kbest_n,
|
|
latest_n=self.config.checkpoint.latest_n)
|
|
|
|
# set random seed if needed
|
|
if args.seed:
|
|
seed_all(args.seed)
|
|
logger.info(f"Set seed {args.seed}")
|
|
|
|
# profiler and benchmark options
|
|
if hasattr(self.args,
|
|
"benchmark_batch_size") and self.args.benchmark_batch_size:
|
|
with UpdateConfig(self.config):
|
|
self.config.batch_size = self.args.benchmark_batch_size
|
|
self.config.log_interval = 1
|
|
logger.info(
|
|
f"Benchmark reset batch-size: {self.args.benchmark_batch_size}")
|
|
|
|
@property
|
|
def train(self):
|
|
return self._train
|
|
|
|
@contextmanager
|
|
def eval(self):
|
|
self._train = False
|
|
yield
|
|
self._train = True
|
|
|
|
def setup(self):
|
|
"""Setup the experiment.
|
|
"""
|
|
self.setup_output_dir()
|
|
self.dump_config()
|
|
self.setup_visualizer()
|
|
|
|
self.setup_dataloader()
|
|
self.setup_model()
|
|
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
|
|
@property
|
|
def parallel(self):
|
|
"""A flag indicating whether the experiment should run with
|
|
multiprocessing.
|
|
"""
|
|
return self.args.ngpu > 1
|
|
|
|
@mp_tools.rank_zero_only
|
|
def save(self, tag=None, infos: dict=None):
|
|
"""Save checkpoint (model parameters and optimizer states).
|
|
|
|
Args:
|
|
tag (int or str, optional): None for step, else using tag, e.g epoch. Defaults to None.
|
|
infos (dict, optional): meta data to save. Defaults to None.
|
|
"""
|
|
|
|
infos = infos if infos else dict()
|
|
infos.update({
|
|
"step": self.iteration,
|
|
"epoch": self.epoch,
|
|
"lr": self.optimizer.get_lr()
|
|
})
|
|
self.checkpoint.save_parameters(self.checkpoint_dir, self.iteration
|
|
if tag is None else tag, self.model,
|
|
self.optimizer, infos)
|
|
|
|
def resume_or_scratch(self):
|
|
"""Resume from latest checkpoint at checkpoints in the output
|
|
directory or load a specified checkpoint.
|
|
|
|
If ``args.checkpoint_path`` is not None, load the checkpoint, else
|
|
resume training.
|
|
"""
|
|
scratch = None
|
|
infos = self.checkpoint.load_latest_parameters(
|
|
self.model,
|
|
self.optimizer,
|
|
checkpoint_dir=self.checkpoint_dir,
|
|
checkpoint_path=self.args.checkpoint_path)
|
|
if infos:
|
|
# just restore ckpt
|
|
# lr will resotre from optimizer ckpt
|
|
self.iteration = infos["step"]
|
|
self.epoch = infos["epoch"]
|
|
scratch = False
|
|
logger.info(
|
|
f"Restore ckpt: epoch {self.epoch }, step {self.iteration}!")
|
|
else:
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
scratch = True
|
|
logger.info("Init from scratch!")
|
|
return scratch
|
|
|
|
def maybe_batch_sampler_step(self):
|
|
""" batch_sampler seed by epoch """
|
|
if hasattr(self.train_loader, "batch_sampler"):
|
|
batch_sampler = self.train_loader.batch_sampler
|
|
if isinstance(batch_sampler, paddle.io.DistributedBatchSampler):
|
|
logger.debug(
|
|
f"train_loader.batch_sample.set_epoch: {self.epoch}")
|
|
batch_sampler.set_epoch(self.epoch)
|
|
|
|
def before_train(self):
|
|
from_scratch = self.resume_or_scratch()
|
|
if from_scratch:
|
|
# scratch: save init model, i.e. 0 epoch
|
|
self.save(tag='init', infos=None)
|
|
else:
|
|
# resume: train next_epoch and next_iteration
|
|
self.epoch += 1
|
|
self.iteration += 1
|
|
logger.info(
|
|
f"Resume train: epoch {self.epoch }, step {self.iteration}!")
|
|
|
|
self.maybe_batch_sampler_step()
|
|
|
|
def new_epoch(self):
|
|
"""Reset the train loader seed and increment `epoch`.
|
|
"""
|
|
# `iteration` increased by train step
|
|
self.epoch += 1
|
|
self.maybe_batch_sampler_step()
|
|
|
|
def after_train_batch(self):
|
|
if self.args.benchmark_max_step:
|
|
profiler.add_profiler_step(self.args.profiler_options)
|
|
if self.args.benchmark_max_step and self.iteration > self.args.benchmark_max_step:
|
|
logger.info(
|
|
f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
|
|
sys.exit(0)
|
|
|
|
def do_train(self):
|
|
"""The training process control by epoch."""
|
|
self.before_train()
|
|
|
|
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
|
|
while self.epoch < self.config.n_epoch:
|
|
with Timer("Epoch-Train Time Cost: {}"):
|
|
self.model.train()
|
|
try:
|
|
data_start_time = time.time()
|
|
for batch_index, batch in enumerate(self.train_loader):
|
|
dataload_time = time.time() - data_start_time
|
|
msg = "Train:"
|
|
observation = OrderedDict()
|
|
with ObsScope(observation):
|
|
report("Rank", dist.get_rank())
|
|
report("epoch", self.epoch)
|
|
report('step', self.iteration)
|
|
report("lr", self.lr_scheduler())
|
|
self.train_batch(batch_index, batch, msg)
|
|
self.after_train_batch()
|
|
report('iter', batch_index + 1)
|
|
report('total', len(self.train_loader))
|
|
report('reader_cost', dataload_time)
|
|
observation['batch_cost'] = observation[
|
|
'reader_cost'] + observation['step_cost']
|
|
observation['samples'] = observation['batch_size']
|
|
observation['ips samples/s'] = observation[
|
|
'batch_size'] / observation['batch_cost']
|
|
for k, v in observation.items():
|
|
msg += f" {k}: "
|
|
msg += f"{v:>.8f}" if isinstance(v,
|
|
float) else f"{v}"
|
|
msg += ","
|
|
msg = msg[:-1] # remove the last ","
|
|
if (batch_index + 1) % self.config.log_interval == 0:
|
|
logger.info(msg)
|
|
data_start_time = time.time()
|
|
except Exception as e:
|
|
logger.error(e)
|
|
raise e
|
|
|
|
with Timer("Eval Time Cost: {}"):
|
|
total_loss, num_seen_utts = self.valid()
|
|
if dist.get_world_size() > 1:
|
|
num_seen_utts = paddle.to_tensor(num_seen_utts)
|
|
# the default operator in all_reduce function is sum.
|
|
dist.all_reduce(num_seen_utts)
|
|
total_loss = paddle.to_tensor(total_loss)
|
|
dist.all_reduce(total_loss)
|
|
cv_loss = total_loss / num_seen_utts
|
|
cv_loss = float(cv_loss)
|
|
else:
|
|
cv_loss = total_loss / num_seen_utts
|
|
|
|
logger.info(
|
|
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
|
|
if self.visualizer:
|
|
self.visualizer.add_scalar(
|
|
tag='eval/cv_loss', value=cv_loss, step=self.epoch)
|
|
self.visualizer.add_scalar(
|
|
tag='eval/lr', value=self.lr_scheduler(), step=self.epoch)
|
|
|
|
# step lr every epoch
|
|
self.lr_scheduler.step()
|
|
# after epoch
|
|
self.save(tag=self.epoch, infos={'val_loss': cv_loss})
|
|
self.new_epoch()
|
|
|
|
def run(self):
|
|
"""The routine of the experiment after setup. This method is intended
|
|
to be used by the user.
|
|
"""
|
|
try:
|
|
with Timer("Training Done: {}"):
|
|
self.do_train()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
finally:
|
|
self.destory()
|
|
|
|
def restore(self):
|
|
"""Resume from latest checkpoint at checkpoints in the output
|
|
directory or load a specified checkpoint.
|
|
|
|
If ``args.checkpoint_path`` is not None, load the checkpoint, else
|
|
resume training.
|
|
"""
|
|
assert self.args.checkpoint_path
|
|
infos = self.checkpoint.load_latest_parameters(
|
|
self.model, checkpoint_path=self.args.checkpoint_path)
|
|
return infos
|
|
|
|
def run_test(self):
|
|
"""Do Test/Decode"""
|
|
try:
|
|
with Timer("Test/Decode Done: {}"):
|
|
with self.eval():
|
|
self.restore()
|
|
self.test()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
|
|
def run_export(self):
|
|
"""Do Model Export"""
|
|
try:
|
|
with Timer("Export Done: {}"):
|
|
with self.eval():
|
|
self.restore()
|
|
self.export()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
|
|
def run_align(self):
|
|
"""Do CTC alignment"""
|
|
try:
|
|
with Timer("Align Done: {}"):
|
|
with self.eval():
|
|
self.restore()
|
|
self.align()
|
|
except KeyboardInterrupt:
|
|
sys.exit(-1)
|
|
|
|
def setup_output_dir(self):
|
|
"""Create a directory used for output.
|
|
"""
|
|
if self.args.output:
|
|
output_dir = Path(self.args.output).expanduser()
|
|
elif self.args.checkpoint_path:
|
|
output_dir = Path(
|
|
self.args.checkpoint_path).expanduser().parent.parent
|
|
elif self.args.export_path:
|
|
output_dir = Path(self.args.export_path).expanduser().parent.parent
|
|
self.output_dir = output_dir
|
|
self.output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.checkpoint_dir = self.output_dir / "checkpoints"
|
|
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.log_dir = output_dir / "log"
|
|
self.log_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.test_dir = output_dir / "test"
|
|
self.test_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.decode_dir = output_dir / "decode"
|
|
self.decode_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.export_dir = output_dir / "export"
|
|
self.export_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.visual_dir = output_dir / "visual"
|
|
self.visual_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.config_dir = output_dir / "conf"
|
|
self.config_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
@mp_tools.rank_zero_only
|
|
def destory(self):
|
|
"""Close visualizer to avoid hanging after training"""
|
|
# https://github.com/pytorch/fairseq/issues/2357
|
|
if self.visualizer:
|
|
self.visualizer.close()
|
|
|
|
@mp_tools.rank_zero_only
|
|
def setup_visualizer(self):
|
|
"""Initialize a visualizer to log the experiment.
|
|
|
|
The visual log is saved in the output directory.
|
|
|
|
Notes
|
|
------
|
|
Only the main process has a visualizer with it. Use multiple
|
|
visualizers in multiprocess to write to a same log file may cause
|
|
unexpected behaviors.
|
|
"""
|
|
# visualizer
|
|
visualizer = LogWriter(logdir=str(self.visual_dir))
|
|
self.visualizer = visualizer
|
|
|
|
@mp_tools.rank_zero_only
|
|
def dump_config(self):
|
|
"""Save the configuration used for this experiment.
|
|
|
|
It is saved in to ``config.yaml`` in the output directory at the
|
|
beginning of the experiment.
|
|
"""
|
|
config_file = self.config_dir / "config.yaml"
|
|
if self.train and config_file.exists():
|
|
time_stamp = time.strftime("%Y_%m_%d_%H_%M_%s", time.gmtime())
|
|
target_path = self.config_dir / ".".join(
|
|
[time_stamp, "config.yaml"])
|
|
config_file.rename(target_path)
|
|
|
|
with open(config_file, 'wt') as f:
|
|
print(self.config, file=f)
|
|
|
|
def train_batch(self):
|
|
"""The training loop. A subclass should implement this method.
|
|
"""
|
|
raise NotImplementedError("train_batch should be implemented.")
|
|
|
|
@paddle.no_grad()
|
|
def valid(self):
|
|
"""The validation. A subclass should implement this method.
|
|
"""
|
|
raise NotImplementedError("valid should be implemented.")
|
|
|
|
@paddle.no_grad()
|
|
def test(self):
|
|
"""The test. A subclass should implement this method in Tester.
|
|
"""
|
|
raise NotImplementedError("test should be implemented.")
|
|
|
|
@paddle.no_grad()
|
|
def export(self):
|
|
"""The test. A subclass should implement this method in Tester.
|
|
"""
|
|
raise NotImplementedError("export should be implemented.")
|
|
|
|
@paddle.no_grad()
|
|
def align(self):
|
|
"""The align. A subclass should implement this method in Tester.
|
|
"""
|
|
raise NotImplementedError("align should be implemented.")
|
|
|
|
def setup_model(self):
|
|
"""Setup model, criterion and optimizer, etc. A subclass should
|
|
implement this method.
|
|
"""
|
|
raise NotImplementedError("setup_model should be implemented.")
|
|
|
|
def setup_dataloader(self):
|
|
"""Setup training dataloader and validation dataloader. A subclass
|
|
should implement this method.
|
|
"""
|
|
raise NotImplementedError("setup_dataloader should be implemented.")
|