You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/asr/online/asr_engine.py

890 lines
35 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from typing import Optional
import numpy as np
import paddle
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.resource import CommonTaskResource
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.speech import SpeechSegment
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
from paddlespeech.s2t.utils.tensor_utils import pad_sequence
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import pcm2float
from paddlespeech.server.utils.paddle_predictor import init_predictor
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
# ASR server connection process class
class PaddleASRConnectionHanddler:
def __init__(self, asr_engine):
"""Init a Paddle ASR Connection Handler instance
Args:
asr_engine (ASREngine): the global asr engine
"""
super().__init__()
logger.info(
"create an paddle asr connection handler to process the websocket connection"
)
self.config = asr_engine.config # server config
self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine
self.init()
self.reset()
def init(self):
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text
self.text_feature = self.asr_engine.executor.text_feature
if "deepspeech2" in self.model_type:
from paddlespeech.s2t.io.collator import SpeechCollator
self.am_predictor = self.asr_engine.executor.am_predictor
self.collate_fn_test = SpeechCollator.from_config(self.model_config)
self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2,
blank_id=self.model_config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
None))
cfg = self.model_config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# frame window and frame shift, in samples unit
self.win_length = int(self.model_config.window_ms / 1000 *
self.sample_rate)
self.n_shift = int(self.model_config.stride_ms / 1000 *
self.sample_rate)
elif "conformer" in self.model_type or "transformer" in self.model_type:
# acoustic model
self.model = self.asr_engine.executor.model
# ctc decoding config
self.ctc_decode_config = self.asr_engine.executor.config.decode
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
else:
raise ValueError(f"Not supported: {self.model_type}")
def extract_feat(self, samples):
# we compute the elapsed time of first char occuring
# and we record the start time at the first pcm sample arraving
if "deepspeech2online" in self.model_type:
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
# pcm16 -> pcm 32
# pcm2float will change the orignal samples,
# so we shoule do pcm2float before concatenate
samples = pcm2float(samples)
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The connection remain the audio samples: {self.remained_wav.shape}"
)
# read audio
speech_segment = SpeechSegment.from_pcm(
self.remained_wav, self.sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
feat = self.collate_fn_test.augmentation.transform_feature(spectrum)
# audio_len is frame num
frame_num = feat.shape[0]
feat = paddle.to_tensor(feat, dtype='float32')
feat = paddle.unsqueeze(feat, axis=0)
if self.cached_feat is None:
self.cached_feat = feat
else:
assert (len(feat.shape) == 3)
assert (len(self.cached_feat.shape) == 3)
self.cached_feat = paddle.concat(
[self.cached_feat, feat], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
self.num_frames += frame_num
self.remained_wav = self.remained_wav[self.n_shift * frame_num:]
logger.info(
f"process the audio feature success, the connection feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the connection remain the audio samples: {self.remained_wav.shape}"
)
elif "conformer_online" in self.model_type:
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
self.num_samples += samples.shape[0]
logger.info(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.info(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav,
**self.preprocess_args)
x_chunk = paddle.to_tensor(
x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3) # (B,T,D)
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = x_chunk.shape[1]
# global frame step
self.num_frames += num_frames
# update remained wav
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.info(
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
)
logger.info(
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
)
logger.info(f"global samples: {self.num_samples}")
logger.info(f"global frames: {self.num_frames}")
else:
raise ValueError(f"not supported: {self.model_type}")
def reset(self):
if "deepspeech2" in self.model_type:
# for deepspeech2
# init state
self.chunk_state_h_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.decoder.reset_decoder(batch_size=1)
self.device = None
## common
# global sample and frame step
self.num_samples = 0
self.num_frames = 0
# cache for audio and feat
self.remained_wav = None
self.cached_feat = None
# partial/ending decoding results
self.result_transcripts = ['']
## conformer
# cache for conformer online
self.subsampling_cache = None
self.elayers_output_cache = None
self.conformer_cnn_cache = None
self.encoder_out = None
# conformer decoding state
self.chunk_num = 0 # globa decoding chunk num
self.offset = 0 # global offset in decoding frame unit
self.hyps = []
# token timestamp result
self.word_time_stamp = []
# one best timestamp viterbi prob is large.
self.time_stamp = []
def decode(self, is_finished=False):
"""advance decoding
Args:
is_finished (bool, optional): Is last frame or not. Defaults to False.
Raises:
Exception: when not support model.
Returns:
None: nothing
"""
if "deepspeech2online" in self.model_type:
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
context = 7 # context=7, in audio frame unit
subsampling = 4 # subsampling=4, in audio frame unit
cached_feature_num = context - subsampling
# decoding window for model, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride for model, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best]
# update feat cache
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
# return trans_best[0]
elif "conformer" in self.model_type or "transformer" in self.model_type:
try:
logger.info(
f"we will use the transformer like model : {self.model_type}"
)
self.advance_decoding(is_finished)
self.update_result()
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
@paddle.no_grad()
def decode_one_chunk(self, x_chunk, x_chunk_lens):
"""forward one chunk frames
Args:
x_chunk (np.ndarray): (B,T,D), audio frames.
x_chunk_lens ([type]): (B,), audio frame lens
Returns:
logprob: poster probability.
"""
logger.info("start to decoce one chunk for deepspeech2")
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one best result for deepspeech2: {trans_best[0]}")
return trans_best[0]
@paddle.no_grad()
def advance_decoding(self, is_finished=False):
logger.info(
"Conformer/Transformer: start to decode with advanced_decoding method"
)
cfg = self.ctc_decode_config
# cur chunk size, in decoding frame unit
decoding_chunk_size = cfg.decoding_chunk_size
# using num of history chunks
num_decoding_left_chunks = cfg.num_decoding_left_chunks
assert decoding_chunk_size > 0
subsampling = self.model.encoder.embed.subsampling_rate
context = self.model.encoder.embed.right_context + 1
# processed chunk feature cached for next chunk
cached_feature_num = context - subsampling
# decoding stride, in audio frame unit
stride = subsampling * decoding_chunk_size
# decoding window, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
if self.cached_feat is None:
logger.info("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.info(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.info(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.info(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# hist of chunks, in deocding frame unit
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
outputs = []
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
# record the end for removing the processed feat
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# global chunk_num
self.chunk_num += 1
# cur chunk
chunk_xs = self.cached_feat[:, cur:end, :]
# forward chunk
(y, self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
chunk_xs, self.offset, required_cache_size,
self.subsampling_cache, self.elayers_output_cache,
self.conformer_cnn_cache)
outputs.append(y)
# update the global offset, in decoding frame unit
self.offset += y.shape[1]
ys = paddle.cat(outputs, 1)
if self.encoder_out is None:
self.encoder_out = ys
else:
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
# get the ctc probs
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
# advance decoding
self.searcher.search(ctc_probs, self.cached_feat.place)
# get one best hyps
self.hyps = self.searcher.get_one_best_hyps()
assert self.cached_feat.shape[0] == 1
assert end >= cached_feature_num
# advance cache of feat
self.cached_feat = self.cached_feat[0, end -
cached_feature_num:, :].unsqueeze(0)
assert len(
self.cached_feat.shape
) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
logger.info(
f"This connection handler encoder out shape: {self.encoder_out.shape}"
)
def update_result(self):
"""Conformer/Transformer hyps to result.
"""
logger.info("update the final result")
hyps = self.hyps
# output results and tokenids
self.result_transcripts = [
self.text_feature.defeaturize(hyp) for hyp in hyps
]
self.result_tokenids = [hyp for hyp in hyps]
def get_result(self):
"""return partial/ending asr result.
Returns:
str: one best result of partial/ending.
"""
if len(self.result_transcripts) > 0:
return self.result_transcripts[0]
else:
return ''
def get_word_time_stamp(self):
"""return token timestamp result.
Returns:
list: List of ('w':token, 'bg':time, 'ed':time)
"""
return self.word_time_stamp
@paddle.no_grad()
def rescoring(self):
"""Second-Pass Decoding,
only for conformer and transformer model.
"""
if "deepspeech2" in self.model_type:
logger.info("deepspeech2 not support rescoring decoding.")
return
if "attention_rescoring" != self.ctc_decode_config.decoding_method:
logger.info(
f"decoding method not match: {self.ctc_decode_config.decoding_method}, need attention_rescoring"
)
return
logger.info("rescoring the final result")
# last decoding for last audio
self.searcher.finalize_search()
# update beam search results
self.update_result()
beam_size = self.ctc_decode_config.beam_size
hyps = self.searcher.get_hyps()
if hyps is None or len(hyps) == 0:
logger.info("No Hyps!")
return
# rescore by decoder post probability
# assert len(hyps) == beam_size
# list of Tensor
hyp_list = []
for hyp in hyps:
hyp_content = hyp[0]
# Prevent the hyp is empty
if len(hyp_content) == 0:
hyp_content = (self.model.ctc.blank_id, )
hyp_content = paddle.to_tensor(
hyp_content, place=self.device, dtype=paddle.long)
hyp_list.append(hyp_content)
hyps_pad = pad_sequence(
hyp_list, batch_first=True, padding_value=self.model.ignore_id)
hyps_lens = paddle.to_tensor(
[len(hyp[0]) for hyp in hyps], place=self.device,
dtype=paddle.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
self.model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out = self.encoder_out.repeat(beam_size, 1, 1)
encoder_mask = paddle.ones(
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
decoder_out, _ = self.model.decoder(
encoder_out, encoder_mask, hyps_pad,
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
# ctc score in ln domain
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
decoder_out = decoder_out.numpy()
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp[0]):
score += decoder_out[i][j][w]
# last decoder output token is `eos`, for laste decoder input token.
score += decoder_out[i][len(hyp[0])][self.model.eos]
# add ctc score (which in ln domain)
score += hyp[1] * self.ctc_decode_config.ctc_weight
if score > best_score:
best_score = score
best_index = i
# update the one best result
# hyps stored the beam results and each fields is:
logger.info(f"best hyp index: {best_index}")
# logger.info(f'best result: {hyps[best_index]}')
# the field of the hyps is:
## asr results
# hyps[0][0]: the sentence word-id in the vocab with a tuple
# hyps[0][1]: the sentence decoding probability with all paths
## timestamp
# hyps[0][2]: viterbi_blank ending probability
# hyps[0][3]: viterbi_non_blank dending probability
# hyps[0][4]: current_token_prob,
# hyps[0][5]: times_viterbi_blank ending timestamp,
# hyps[0][6]: times_titerbi_non_blank encding timestamp.
self.hyps = [hyps[best_index][0]]
logger.info(f"best hyp ids: {self.hyps}")
# update the hyps time stamp
self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[
best_index][3] else hyps[best_index][6]
logger.info(f"time stamp: {self.time_stamp}")
# update one best result
self.update_result()
# update each word start and end time stamp
# decoding frame to audio frame
frame_shift = self.model.encoder.embed.subsampling_rate
frame_shift_in_sec = frame_shift * (self.n_shift / self.sample_rate)
logger.info(f"frame shift sec: {frame_shift_in_sec}")
word_time_stamp = []
for idx, _ in enumerate(self.time_stamp):
start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
) / 2.0 if idx > 0 else 0
start = start * frame_shift_in_sec
end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
end = end * frame_shift_in_sec
word_time_stamp.append({
"w": self.result_transcripts[0][idx],
"bg": start,
"ed": end
})
# logger.info(f"{word_time_stamp[-1]}")
self.word_time_stamp = word_time_stamp
logger.info(f"word time stamp: {self.word_time_stamp}")
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.task_resource = CommonTaskResource(
task='asr', model_format='dynamic', inference_mode='online')
def _init_from_path(self,
model_type: str=None,
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
if not model_type or not lang or not sample_rate:
logger.error(
"The model type or lang or sample rate is None, please input an valid server parameter yaml"
)
return False
self.model_type = model_type
self.sample_rate = sample_rate
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None or am_model is None or am_params is None:
logger.info(f"Load the pretrained model, tag = {tag}")
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
self.am_model = os.path.join(self.res_path,
self.task_resource.res_dict['model'])
self.am_params = os.path.join(self.res_path,
self.task_resource.res_dict['params'])
logger.info(self.res_path)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path)
logger.info(self.am_model)
logger.info(self.am_params)
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
with UpdateConfig(self.config):
if "deepspeech2" in model_type:
from paddlespeech.s2t.io.collator import SpeechCollator
self.vocab = self.config.vocab_filepath
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
self.collate_fn_test = SpeechCollator.from_config(self.config)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type, vocab=self.vocab)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
logger.info(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type:
logger.info("start to create the stream conformer asr engine")
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
# update the decoding method
if decode_method:
self.config.decode.decoding_method = decode_method
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
# Generally we set the decoding_method to attention_rescoring
if self.config.decode.decoding_method not in [
"ctc_prefix_beam_search", "attention_rescoring"
]:
logger.info(
"we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
else:
raise Exception("wrong type")
if "deepspeech2" in model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in model_type or "transformer" in model_type:
model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset}
logger.info(f"model name: {model_name}")
model_class = self.task_resource.get_model_class(model_name)
model_conf = self.config
model = model_class.from_config(model_conf)
self.model = model
self.model.eval()
# load model
model_dict = paddle.load(self.am_model)
self.model.set_state_dict(model_dict)
logger.info("create the transformer like model success")
else:
raise ValueError(f"Not support: {model_type}")
return True
class ASREngine(BaseEngine):
"""ASR server resource
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
logger.info("create the online asr engine resource instance")
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.config = config
self.executor = ASRServerExecutor()
try:
self.device = self.config.get("device", paddle.get_device())
paddle.set_device(self.device)
except BaseException as e:
logger.error(
f"Set device failed, please check if device '{self.device}' is already used and the parameter 'device' in the yaml file"
)
logger.error(
"If all GPU or XPU is used, you can set the server to 'cpu'")
sys.exit(-1)
logger.info(f"paddlespeech_server set the device: {self.device}")
if not self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
am_predictor_conf=self.config.am_predictor_conf):
logger.error(
"Init the ASR server occurs error, please check the server configuration yaml"
)
return False
logger.info("Initialize ASR server engine successfully.")
return True
def preprocess(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def run(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def postprocess(self):
raise NotImplementedError("Online not using this.")