You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/stream_play_tts.py

182 lines
6.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# stream play TTS
# Before first execution, download and decompress the models in the execution directory
# wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip
# wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip
# unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip
# unzip mb_melgan_csmsc_onnx_0.2.0.zip
import math
import time
import numpy as np
import onnxruntime as ort
import pyaudio
import soundfile as sf
from paddlespeech.server.utils.audio_process import float2pcm
from paddlespeech.server.utils.util import denorm
from paddlespeech.server.utils.util import get_chunks
from paddlespeech.t2s.frontend.zh_frontend import Frontend
voc_block = 36
voc_pad = 14
am_block = 72
am_pad = 12
voc_upsample = 300
phones_dict = "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/phone_id_map.txt"
frontend = Frontend(phone_vocab_path=phones_dict, tone_vocab_path=None)
am_stat_path = "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/speech_stats.npy"
am_mu, am_std = np.load(am_stat_path)
# 模型路径
onnx_am_encoder = "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/fastspeech2_csmsc_am_encoder_infer.onnx"
onnx_am_decoder = "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/fastspeech2_csmsc_am_decoder.onnx"
onnx_am_postnet = "fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0/fastspeech2_csmsc_am_postnet.onnx"
onnx_voc_melgan = "mb_melgan_csmsc_onnx_0.2.0/mb_melgan_csmsc.onnx"
# 用CPU推理
providers = ['CPUExecutionProvider']
# 配置ort session
sess_options = ort.SessionOptions()
# 创建session
am_encoder_infer_sess = ort.InferenceSession(
onnx_am_encoder, providers=providers, sess_options=sess_options)
am_decoder_sess = ort.InferenceSession(
onnx_am_decoder, providers=providers, sess_options=sess_options)
am_postnet_sess = ort.InferenceSession(
onnx_am_postnet, providers=providers, sess_options=sess_options)
voc_melgan_sess = ort.InferenceSession(
onnx_voc_melgan, providers=providers, sess_options=sess_options)
def depadding(data, chunk_num, chunk_id, block, pad, upsample):
"""
Streaming inference removes the result of pad inference
"""
front_pad = min(chunk_id * block, pad)
# first chunk
if chunk_id == 0:
data = data[:block * upsample]
# last chunk
elif chunk_id == chunk_num - 1:
data = data[front_pad * upsample:]
# middle chunk
else:
data = data[front_pad * upsample:(front_pad + block) * upsample]
return data
def inference_stream(text):
input_ids = frontend.get_input_ids(
text, merge_sentences=False, get_tone_ids=False)
phone_ids = input_ids["phone_ids"]
for i in range(len(phone_ids)):
part_phone_ids = phone_ids[i].numpy()
voc_chunk_id = 0
orig_hs = am_encoder_infer_sess.run(
None, input_feed={'text': part_phone_ids})
orig_hs = orig_hs[0]
# streaming voc chunk info
mel_len = orig_hs.shape[1]
voc_chunk_num = math.ceil(mel_len / voc_block)
start = 0
end = min(voc_block + voc_pad, mel_len)
# streaming am
hss = get_chunks(orig_hs, am_block, am_pad, "am")
am_chunk_num = len(hss)
for i, hs in enumerate(hss):
am_decoder_output = am_decoder_sess.run(None, input_feed={'xs': hs})
am_postnet_output = am_postnet_sess.run(
None,
input_feed={
'xs': np.transpose(am_decoder_output[0], (0, 2, 1))
})
am_output_data = am_decoder_output + np.transpose(
am_postnet_output[0], (0, 2, 1))
normalized_mel = am_output_data[0][0]
sub_mel = denorm(normalized_mel, am_mu, am_std)
sub_mel = depadding(sub_mel, am_chunk_num, i, am_block, am_pad, 1)
if i == 0:
mel_streaming = sub_mel
else:
mel_streaming = np.concatenate((mel_streaming, sub_mel), axis=0)
# streaming voc
# 当流式AM推理的mel帧数大于流式voc推理的chunk size开始进行流式voc 推理
while (mel_streaming.shape[0] >= end and
voc_chunk_id < voc_chunk_num):
voc_chunk = mel_streaming[start:end, :]
sub_wav = voc_melgan_sess.run(
output_names=None, input_feed={'logmel': voc_chunk})
sub_wav = depadding(sub_wav[0], voc_chunk_num, voc_chunk_id,
voc_block, voc_pad, voc_upsample)
yield sub_wav
voc_chunk_id += 1
start = max(0, voc_chunk_id * voc_block - voc_pad)
end = min((voc_chunk_id + 1) * voc_block + voc_pad, mel_len)
if __name__ == '__main__':
text = "欢迎使用飞桨语音合成系统,测试一下合成效果。"
# warm up
# onnxruntime 第一次时间会长一些,建议先 warmup 一下
for sub_wav in inference_stream(text="哈哈哈哈"):
continue
# pyaudio 播放
p = pyaudio.PyAudio()
stream = p.open(
format=p.get_format_from_width(2), # int16
channels=1,
rate=24000,
output=True)
# 计时
wavs = []
t1 = time.time()
for sub_wav in inference_stream(text):
print("响应时间:", time.time() - t1)
t1 = time.time()
wavs.append(sub_wav.flatten())
# float32 to int16
wav = float2pcm(sub_wav)
# to bytes
wav_bytes = wav.tobytes()
stream.write(wav_bytes)
# 关闭 pyaudio 播放器
stream.stop_stream()
stream.close()
p.terminate()
# 流式合成的结果导出
wav = np.concatenate(wavs)
print(wav.shape)
sf.write("demo_stream.wav", data=wav, samplerate=24000)