You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/decoder.py

371 lines
15 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Decoder definition."""
from typing import Any
from typing import List
from typing import Optional
from typing import Tuple
import paddle
from paddle import nn
from typeguard import check_argument_types
from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface
from paddlespeech.s2t.modules.align import Embedding
from paddlespeech.s2t.modules.align import LayerNorm
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.attention import MultiHeadedAttention
from paddlespeech.s2t.modules.decoder_layer import DecoderLayer
from paddlespeech.s2t.modules.embedding import PositionalEncoding
from paddlespeech.s2t.modules.mask import make_non_pad_mask
from paddlespeech.s2t.modules.mask import make_xs_mask
from paddlespeech.s2t.modules.mask import subsequent_mask
from paddlespeech.s2t.modules.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
__all__ = ["TransformerDecoder"]
class TransformerDecoder(BatchScorerInterface, nn.Layer):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
encoder_output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the hidden units number of position-wise feedforward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
self_attention_dropout_rate: dropout rate for attention
input_layer: input layer type, `embed`
use_output_layer: whether to use output layer
pos_enc_class: PositionalEncoding module
normalize_before:
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
concat_after: whether to concat attention layer's input and output
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
self_attention_dropout_rate: float=0.0,
src_attention_dropout_rate: float=0.0,
input_layer: str="embed",
use_output_layer: bool=True,
normalize_before: bool=True,
concat_after: bool=False,
max_len: int=5000):
assert check_argument_types()
nn.Layer.__init__(self)
self.selfattention_layer_type = 'selfattn'
attention_dim = encoder_output_size
if input_layer == "embed":
self.embed = nn.Sequential(
Embedding(vocab_size, attention_dim),
PositionalEncoding(
attention_dim, positional_dropout_rate, max_len=max_len), )
else:
raise ValueError(f"only 'embed' is supported: {input_layer}")
self.normalize_before = normalize_before
self.after_norm = LayerNorm(attention_dim, epsilon=1e-12)
self.use_output_layer = use_output_layer
self.output_layer = Linear(attention_dim, vocab_size)
self.decoders = nn.LayerList([
DecoderLayer(
size=attention_dim,
self_attn=MultiHeadedAttention(attention_heads, attention_dim,
self_attention_dropout_rate),
src_attn=MultiHeadedAttention(attention_heads, attention_dim,
src_attention_dropout_rate),
feed_forward=PositionwiseFeedForward(
attention_dim, linear_units, dropout_rate),
dropout_rate=dropout_rate,
normalize_before=normalize_before,
concat_after=concat_after, ) for _ in range(num_blocks)
])
def forward(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
ys_in_pad: paddle.Tensor,
ys_in_lens: paddle.Tensor,
r_ys_in_pad: paddle.Tensor=paddle.empty([0]),
reverse_weight: float=0.0) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: not used in transformer decoder, in order to unify api
with bidirectional decoder
reverse_weight: not used in transformer decoder, in order to unify
api with bidirectional decode
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, vocab_size)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (make_non_pad_mask(ys_in_lens).unsqueeze(1))
# m: (1, L, L)
m = subsequent_mask(tgt_mask.shape[-1]).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
x, _ = self.embed(tgt)
for layer in self.decoders:
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.use_output_layer:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, paddle.to_tensor(0.0), olens
def forward_one_step(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
tgt: paddle.Tensor,
tgt_mask: paddle.Tensor,
cache: Optional[List[paddle.Tensor]]=None,
) -> Tuple[paddle.Tensor, List[paddle.Tensor]]:
"""Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out, maxlen_out)
dtype=paddle.bool
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, token)
"""
x, _ = self.embed(tgt)
new_cache = []
for i, decoder in enumerate(self.decoders):
if cache is None:
c = None
else:
c = cache[i]
x, tgt_mask, memory, memory_mask = decoder(
x, tgt_mask, memory, memory_mask, cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.use_output_layer:
y = paddle.log_softmax(self.output_layer(y), axis=-1)
return y, new_cache
# beam search API (see ScorerInterface)
def score(self, ys, state, x):
"""Score.
ys: (ylen,)
x: (xlen, n_feat)
"""
ys_mask = subsequent_mask(len(ys)).unsqueeze(0) # (B,L,L)
x_mask = make_xs_mask(x.unsqueeze(0)).unsqueeze(1) # (B,1,T)
if self.selfattention_layer_type != "selfattn":
# TODO(karita): implement cache
logging.warning(
f"{self.selfattention_layer_type} does not support cached decoding."
)
state = None
logp, state = self.forward_one_step(
x.unsqueeze(0), x_mask, ys.unsqueeze(0), ys_mask, cache=state)
return logp.squeeze(0), state
# batch beam search API (see BatchScorerInterface)
def batch_score(self,
ys: paddle.Tensor,
states: List[Any],
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
"""Score new token batch (required).
Args:
ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (paddle.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[paddle.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
paddle.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.shape[-1]).unsqueeze(0) # (B,L,L)
xs_mask = make_xs_mask(xs).unsqueeze(1) # (B,1,T)
logp, states = self.forward_one_step(
xs, xs_mask, ys, ys_mask, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)]
for b in range(n_batch)]
return logp, state_list
class BiTransformerDecoder(BatchScorerInterface, nn.Layer):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
encoder_output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the hidden units number of position-wise feedforward
num_blocks: the number of decoder blocks
r_num_blocks: the number of right to left decoder blocks
dropout_rate: dropout rate
self_attention_dropout_rate: dropout rate for attention
input_layer: input layer type
use_output_layer: whether to use output layer
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
normalize_before:
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
concat_after: whether to concat attention layer's input and output
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
r_num_blocks: int=0,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
self_attention_dropout_rate: float=0.0,
src_attention_dropout_rate: float=0.0,
input_layer: str="embed",
use_output_layer: bool=True,
normalize_before: bool=True,
concat_after: bool=False,
max_len: int=5000):
assert check_argument_types()
nn.Layer.__init__(self)
self.left_decoder = TransformerDecoder(
vocab_size, encoder_output_size, attention_heads, linear_units,
num_blocks, dropout_rate, positional_dropout_rate,
self_attention_dropout_rate, src_attention_dropout_rate,
input_layer, use_output_layer, normalize_before, concat_after,
max_len)
self.right_decoder = TransformerDecoder(
vocab_size, encoder_output_size, attention_heads, linear_units,
r_num_blocks, dropout_rate, positional_dropout_rate,
self_attention_dropout_rate, src_attention_dropout_rate,
input_layer, use_output_layer, normalize_before, concat_after,
max_len)
def forward(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
ys_in_pad: paddle.Tensor,
ys_in_lens: paddle.Tensor,
r_ys_in_pad: paddle.Tensor,
reverse_weight: float=0.0,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
used for right to left decoder
reverse_weight: used for right to left decoder
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out,
vocab_size) if use_output_layer is True,
r_x: x: decoded token score (right to left decoder)
before softmax (batch, maxlen_out, vocab_size)
if use_output_layer is True,
olens: (batch, )
"""
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
ys_in_lens)
r_x = paddle.zeros([1])
if reverse_weight > 0.0:
r_x, _, olens = self.right_decoder(memory, memory_mask, r_ys_in_pad,
ys_in_lens)
return l_x, r_x, olens
def forward_one_step(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
tgt: paddle.Tensor,
tgt_mask: paddle.Tensor,
cache: Optional[List[paddle.Tensor]]=None,
) -> Tuple[paddle.Tensor, List[paddle.Tensor]]:
"""Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out, maxlen_out)
dtype=paddle.bool
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
tgt_mask, cache)