You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/cls/paddleinference/cls_engine.py

162 lines
5.3 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import time
from typing import Optional
import numpy as np
import paddle
import yaml
from .pretrained_models import pretrained_models
from paddlespeech.cli.cls.infer import CLSExecutor
from paddlespeech.cli.log import logger
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.paddle_predictor import init_predictor
from paddlespeech.server.utils.paddle_predictor import run_model
__all__ = ['CLSEngine']
class CLSServerExecutor(CLSExecutor):
def __init__(self):
super().__init__()
self.pretrained_models = pretrained_models
def _init_from_path(
self,
model_type: str='panns_cnn14',
cfg_path: Optional[os.PathLike]=None,
model_path: Optional[os.PathLike]=None,
params_path: Optional[os.PathLike]=None,
label_file: Optional[os.PathLike]=None,
predictor_conf: dict=None, ):
"""
Init model and other resources from a specific path.
"""
if cfg_path is None or model_path is None or params_path is None or label_file is None:
tag = model_type + '-' + '32k'
self.res_path = self._get_pretrained_path(tag)
self.cfg_path = os.path.join(
self.res_path, self.pretrained_models[tag]['cfg_path'])
self.model_path = os.path.join(
self.res_path, self.pretrained_models[tag]['model_path'])
self.params_path = os.path.join(
self.res_path, self.pretrained_models[tag]['params_path'])
self.label_file = os.path.join(
self.res_path, self.pretrained_models[tag]['label_file'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.model_path = os.path.abspath(model_path)
self.params_path = os.path.abspath(params_path)
self.label_file = os.path.abspath(label_file)
logger.info(self.cfg_path)
logger.info(self.model_path)
logger.info(self.params_path)
logger.info(self.label_file)
# config
with open(self.cfg_path, 'r') as f:
self._conf = yaml.safe_load(f)
logger.info("Read cfg file successfully.")
# labels
self._label_list = []
with open(self.label_file, 'r') as f:
for line in f:
self._label_list.append(line.strip())
logger.info("Read label file successfully.")
# Create predictor
self.predictor_conf = predictor_conf
self.predictor = init_predictor(
model_file=self.model_path,
params_file=self.params_path,
predictor_conf=self.predictor_conf)
logger.info("Create predictor successfully.")
@paddle.no_grad()
def infer(self):
"""
Model inference and result stored in self.output.
"""
output = run_model(self.predictor, [self._inputs['feats'].numpy()])
self._outputs['logits'] = output[0]
class CLSEngine(BaseEngine):
"""CLS server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(CLSEngine, self).__init__()
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.executor = CLSServerExecutor()
self.config = config
self.executor._init_from_path(
self.config.model_type, self.config.cfg_path,
self.config.model_path, self.config.params_path,
self.config.label_file, self.config.predictor_conf)
logger.info("Initialize CLS server engine successfully.")
return True
def run(self, audio_data):
"""engine run
Args:
audio_data (bytes): base64.b64decode
"""
self.executor.preprocess(io.BytesIO(audio_data))
st = time.time()
self.executor.infer()
infer_time = time.time() - st
logger.info("inference time: {}".format(infer_time))
logger.info("cls engine type: inference")
def postprocess(self, topk: int):
"""postprocess
"""
assert topk <= len(self.executor._label_list
), 'Value of topk is larger than number of labels.'
result = np.squeeze(self.executor._outputs['logits'], axis=0)
topk_idx = (-result).argsort()[:topk]
topk_results = []
for idx in topk_idx:
res = {}
label, score = self.executor._label_list[idx], result[idx]
res['class_name'] = label
res['prob'] = score
topk_results.append(res)
return topk_results