You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.3 KiB
162 lines
5.3 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
import os
|
|
import time
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
|
|
from .pretrained_models import pretrained_models
|
|
from paddlespeech.cli.cls.infer import CLSExecutor
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
from paddlespeech.server.utils.paddle_predictor import run_model
|
|
|
|
__all__ = ['CLSEngine']
|
|
|
|
|
|
class CLSServerExecutor(CLSExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.pretrained_models = pretrained_models
|
|
|
|
def _init_from_path(
|
|
self,
|
|
model_type: str='panns_cnn14',
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
model_path: Optional[os.PathLike]=None,
|
|
params_path: Optional[os.PathLike]=None,
|
|
label_file: Optional[os.PathLike]=None,
|
|
predictor_conf: dict=None, ):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
|
|
if cfg_path is None or model_path is None or params_path is None or label_file is None:
|
|
tag = model_type + '-' + '32k'
|
|
self.res_path = self._get_pretrained_path(tag)
|
|
self.cfg_path = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['cfg_path'])
|
|
self.model_path = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['model_path'])
|
|
self.params_path = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['params_path'])
|
|
self.label_file = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['label_file'])
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.model_path = os.path.abspath(model_path)
|
|
self.params_path = os.path.abspath(params_path)
|
|
self.label_file = os.path.abspath(label_file)
|
|
|
|
logger.info(self.cfg_path)
|
|
logger.info(self.model_path)
|
|
logger.info(self.params_path)
|
|
logger.info(self.label_file)
|
|
|
|
# config
|
|
with open(self.cfg_path, 'r') as f:
|
|
self._conf = yaml.safe_load(f)
|
|
logger.info("Read cfg file successfully.")
|
|
|
|
# labels
|
|
self._label_list = []
|
|
with open(self.label_file, 'r') as f:
|
|
for line in f:
|
|
self._label_list.append(line.strip())
|
|
logger.info("Read label file successfully.")
|
|
|
|
# Create predictor
|
|
self.predictor_conf = predictor_conf
|
|
self.predictor = init_predictor(
|
|
model_file=self.model_path,
|
|
params_file=self.params_path,
|
|
predictor_conf=self.predictor_conf)
|
|
logger.info("Create predictor successfully.")
|
|
|
|
@paddle.no_grad()
|
|
def infer(self):
|
|
"""
|
|
Model inference and result stored in self.output.
|
|
"""
|
|
output = run_model(self.predictor, [self._inputs['feats'].numpy()])
|
|
self._outputs['logits'] = output[0]
|
|
|
|
|
|
class CLSEngine(BaseEngine):
|
|
"""CLS server engine
|
|
|
|
Args:
|
|
metaclass: Defaults to Singleton.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(CLSEngine, self).__init__()
|
|
|
|
def init(self, config: dict) -> bool:
|
|
"""init engine resource
|
|
|
|
Args:
|
|
config_file (str): config file
|
|
|
|
Returns:
|
|
bool: init failed or success
|
|
"""
|
|
self.executor = CLSServerExecutor()
|
|
self.config = config
|
|
self.executor._init_from_path(
|
|
self.config.model_type, self.config.cfg_path,
|
|
self.config.model_path, self.config.params_path,
|
|
self.config.label_file, self.config.predictor_conf)
|
|
|
|
logger.info("Initialize CLS server engine successfully.")
|
|
return True
|
|
|
|
def run(self, audio_data):
|
|
"""engine run
|
|
|
|
Args:
|
|
audio_data (bytes): base64.b64decode
|
|
"""
|
|
|
|
self.executor.preprocess(io.BytesIO(audio_data))
|
|
st = time.time()
|
|
self.executor.infer()
|
|
infer_time = time.time() - st
|
|
|
|
logger.info("inference time: {}".format(infer_time))
|
|
logger.info("cls engine type: inference")
|
|
|
|
def postprocess(self, topk: int):
|
|
"""postprocess
|
|
"""
|
|
assert topk <= len(self.executor._label_list
|
|
), 'Value of topk is larger than number of labels.'
|
|
|
|
result = np.squeeze(self.executor._outputs['logits'], axis=0)
|
|
topk_idx = (-result).argsort()[:topk]
|
|
topk_results = []
|
|
for idx in topk_idx:
|
|
res = {}
|
|
label, score = self.executor._label_list[idx], result[idx]
|
|
res['class_name'] = label
|
|
res['prob'] = score
|
|
topk_results.append(res)
|
|
|
|
return topk_results
|