You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/modules/residual_block.py

180 lines
7.1 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any
from typing import Dict
from typing import List
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddlespeech.t2s.modules.activation import get_activation
class WaveNetResidualBlock(nn.Layer):
"""A gated activation unit composed of an 1D convolution, a gated tanh
unit and parametric redidual and skip connections. For more details,
refer to `WaveNet: A Generative Model for Raw Audio <https://arxiv.org/abs/1609.03499>`_.
Args:
kernel_size (int, optional): Kernel size of the 1D convolution, by default 3
residual_channels (int, optional): Feature size of the residual output(and also the input), by default 64
gate_channels (int, optional): Output feature size of the 1D convolution, by default 128
skip_channels (int, optional): Feature size of the skip output, by default 64
aux_channels (int, optional): Feature size of the auxiliary input (e.g. spectrogram), by default 80
dropout (float, optional): Probability of the dropout before the 1D convolution, by default 0.
dilation (int, optional): Dilation of the 1D convolution, by default 1
bias (bool, optional): Whether to use bias in the 1D convolution, by default True
use_causal_conv (bool, optional): Whether to use causal padding for the 1D convolution, by default False
"""
def __init__(self,
kernel_size: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
aux_channels: int=80,
dropout: float=0.,
dilation: int=1,
bias: bool=True,
use_causal_conv: bool=False):
super().__init__()
self.dropout = dropout
if use_causal_conv:
padding = (kernel_size - 1) * dilation
else:
assert kernel_size % 2 == 1
padding = (kernel_size - 1) // 2 * dilation
self.use_causal_conv = use_causal_conv
self.conv = nn.Conv1D(
residual_channels,
gate_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
if aux_channels is not None:
self.conv1x1_aux = nn.Conv1D(
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
else:
self.conv1x1_aux = None
gate_out_channels = gate_channels // 2
self.conv1x1_out = nn.Conv1D(
gate_out_channels, residual_channels, kernel_size=1, bias_attr=bias)
self.conv1x1_skip = nn.Conv1D(
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
def forward(self, x, c):
"""
Args:
x (Tensor): the input features. Shape (N, C_res, T)
c (Tensor): the auxiliary input. Shape (N, C_aux, T)
Returns:
res (Tensor): Shape (N, C_res, T), the residual output, which is used as the
input of the next ResidualBlock in a stack of ResidualBlocks.
skip (Tensor): Shape (N, C_skip, T), the skip output, which is collected among
each layer in a stack of ResidualBlocks.
"""
x_input = x
x = F.dropout(x, self.dropout, training=self.training)
x = self.conv(x)
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
if c is not None:
c = self.conv1x1_aux(c)
x += c
a, b = paddle.chunk(x, 2, axis=1)
x = paddle.tanh(a) * F.sigmoid(b)
skip = self.conv1x1_skip(x)
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
return res, skip
class HiFiGANResidualBlock(nn.Layer):
"""Residual block module in HiFiGAN."""
def __init__(
self,
kernel_size: int=3,
channels: int=512,
dilations: List[int]=(1, 3, 5),
bias: bool=True,
use_additional_convs: bool=True,
nonlinear_activation: str="leakyrelu",
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.1},
):
"""Initialize HiFiGANResidualBlock module.
Args:
kernel_size (int): Kernel size of dilation convolution layer.
channels (int): Number of channels for convolution layer.
dilations (List[int]): List of dilation factors.
use_additional_convs (bool): Whether to use additional convolution layers.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
"""
super().__init__()
self.use_additional_convs = use_additional_convs
self.convs1 = nn.LayerList()
if use_additional_convs:
self.convs2 = nn.LayerList()
assert kernel_size % 2 == 1, "Kernel size must be odd number."
for dilation in dilations:
self.convs1.append(
nn.Sequential(
get_activation(nonlinear_activation, **
nonlinear_activation_params),
nn.Conv1D(
channels,
channels,
kernel_size,
1,
dilation=dilation,
bias_attr=bias,
padding=(kernel_size - 1) // 2 * dilation, ), ))
if use_additional_convs:
self.convs2.append(
nn.Sequential(
get_activation(nonlinear_activation, **
nonlinear_activation_params),
nn.Conv1D(
channels,
channels,
kernel_size,
1,
dilation=1,
bias_attr=bias,
padding=(kernel_size - 1) // 2, ), ))
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, channels, T).
Returns:
Tensor: Output tensor (B, channels, T).
"""
for idx in range(len(self.convs1)):
xt = self.convs1[idx](x)
if self.use_additional_convs:
xt = self.convs2[idx](xt)
x = xt + x
return x