You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
13 KiB
365 lines
13 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""This module provides functions to calculate error rate in different level.
|
|
e.g. wer for word-level, cer for char-level.
|
|
"""
|
|
from itertools import groupby
|
|
|
|
import editdistance
|
|
import numpy as np
|
|
|
|
__all__ = ['word_errors', 'char_errors', 'wer', 'cer', "ErrorCalculator"]
|
|
|
|
|
|
def _levenshtein_distance(ref, hyp):
|
|
"""Levenshtein distance is a string metric for measuring the difference
|
|
between two sequences. Informally, the levenshtein disctance is defined as
|
|
the minimum number of single-character edits (substitutions, insertions or
|
|
deletions) required to change one word into the other. We can naturally
|
|
extend the edits to word level when calculate levenshtein disctance for
|
|
two sentences.
|
|
"""
|
|
m = len(ref)
|
|
n = len(hyp)
|
|
|
|
# special case
|
|
if ref == hyp:
|
|
return 0
|
|
if m == 0:
|
|
return n
|
|
if n == 0:
|
|
return m
|
|
|
|
if m < n:
|
|
ref, hyp = hyp, ref
|
|
m, n = n, m
|
|
|
|
# use O(min(m, n)) space
|
|
distance = np.zeros((2, n + 1), dtype=np.int32)
|
|
|
|
# initialize distance matrix
|
|
for j in range(n + 1):
|
|
distance[0][j] = j
|
|
|
|
# calculate levenshtein distance
|
|
for i in range(1, m + 1):
|
|
prev_row_idx = (i - 1) % 2
|
|
cur_row_idx = i % 2
|
|
distance[cur_row_idx][0] = i
|
|
for j in range(1, n + 1):
|
|
if ref[i - 1] == hyp[j - 1]:
|
|
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
|
|
else:
|
|
s_num = distance[prev_row_idx][j - 1] + 1
|
|
i_num = distance[cur_row_idx][j - 1] + 1
|
|
d_num = distance[prev_row_idx][j] + 1
|
|
distance[cur_row_idx][j] = min(s_num, i_num, d_num)
|
|
|
|
return distance[m % 2][n]
|
|
|
|
|
|
def word_errors(reference, hypothesis, ignore_case=False, delimiter=' '):
|
|
"""Compute the levenshtein distance between reference sequence and
|
|
hypothesis sequence in word-level.
|
|
|
|
:param reference: The reference sentence.
|
|
:type reference: str
|
|
:param hypothesis: The hypothesis sentence.
|
|
:type hypothesis: str
|
|
:param ignore_case: Whether case-sensitive or not.
|
|
:type ignore_case: bool
|
|
:param delimiter: Delimiter of input sentences.
|
|
:type delimiter: char
|
|
:return: Levenshtein distance and word number of reference sentence.
|
|
:rtype: list
|
|
"""
|
|
if ignore_case:
|
|
reference = reference.lower()
|
|
hypothesis = hypothesis.lower()
|
|
|
|
ref_words = list(filter(None, reference.split(delimiter)))
|
|
hyp_words = list(filter(None, hypothesis.split(delimiter)))
|
|
|
|
edit_distance = _levenshtein_distance(ref_words, hyp_words)
|
|
# `editdistance.eavl precision` less than `_levenshtein_distance`
|
|
# edit_distance = editdistance.eval(ref_words, hyp_words)
|
|
return float(edit_distance), len(ref_words)
|
|
|
|
|
|
def char_errors(reference, hypothesis, ignore_case=False, remove_space=False):
|
|
"""Compute the levenshtein distance between reference sequence and
|
|
hypothesis sequence in char-level.
|
|
|
|
:param reference: The reference sentence.
|
|
:type reference: str
|
|
:param hypothesis: The hypothesis sentence.
|
|
:type hypothesis: str
|
|
:param ignore_case: Whether case-sensitive or not.
|
|
:type ignore_case: bool
|
|
:param remove_space: Whether remove internal space characters
|
|
:type remove_space: bool
|
|
:return: Levenshtein distance and length of reference sentence.
|
|
:rtype: list
|
|
"""
|
|
if ignore_case:
|
|
reference = reference.lower()
|
|
hypothesis = hypothesis.lower()
|
|
|
|
join_char = ' '
|
|
if remove_space:
|
|
join_char = ''
|
|
|
|
reference = join_char.join(list(filter(None, reference.split(' '))))
|
|
hypothesis = join_char.join(list(filter(None, hypothesis.split(' '))))
|
|
|
|
edit_distance = _levenshtein_distance(reference, hypothesis)
|
|
# `editdistance.eavl precision` less than `_levenshtein_distance`
|
|
# edit_distance = editdistance.eval(reference, hypothesis)
|
|
return float(edit_distance), len(reference)
|
|
|
|
|
|
def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
|
|
"""Calculate word error rate (WER). WER compares reference text and
|
|
hypothesis text in word-level. WER is defined as:
|
|
|
|
.. math::
|
|
WER = (Sw + Dw + Iw) / Nw
|
|
|
|
where
|
|
|
|
.. code-block:: text
|
|
|
|
Sw is the number of words subsituted,
|
|
Dw is the number of words deleted,
|
|
Iw is the number of words inserted,
|
|
Nw is the number of words in the reference
|
|
|
|
We can use levenshtein distance to calculate WER. Please draw an attention
|
|
that empty items will be removed when splitting sentences by delimiter.
|
|
|
|
:param reference: The reference sentence.
|
|
:type reference: str
|
|
:param hypothesis: The hypothesis sentence.
|
|
:type hypothesis: str
|
|
:param ignore_case: Whether case-sensitive or not.
|
|
:type ignore_case: bool
|
|
:param delimiter: Delimiter of input sentences.
|
|
:type delimiter: char
|
|
:return: Word error rate.
|
|
:rtype: float
|
|
:raises ValueError: If word number of reference is zero.
|
|
"""
|
|
edit_distance, ref_len = word_errors(reference, hypothesis, ignore_case,
|
|
delimiter)
|
|
|
|
if ref_len == 0:
|
|
raise ValueError("Reference's word number should be greater than 0.")
|
|
|
|
wer = float(edit_distance) / ref_len
|
|
return wer
|
|
|
|
|
|
def cer(reference, hypothesis, ignore_case=False, remove_space=False):
|
|
"""Calculate charactor error rate (CER). CER compares reference text and
|
|
hypothesis text in char-level. CER is defined as:
|
|
|
|
.. math::
|
|
CER = (Sc + Dc + Ic) / Nc
|
|
|
|
where
|
|
|
|
.. code-block:: text
|
|
|
|
Sc is the number of characters substituted,
|
|
Dc is the number of characters deleted,
|
|
Ic is the number of characters inserted
|
|
Nc is the number of characters in the reference
|
|
|
|
We can use levenshtein distance to calculate CER. Chinese input should be
|
|
encoded to unicode. Please draw an attention that the leading and tailing
|
|
space characters will be truncated and multiple consecutive space
|
|
characters in a sentence will be replaced by one space character.
|
|
|
|
:param reference: The reference sentence.
|
|
:type reference: str
|
|
:param hypothesis: The hypothesis sentence.
|
|
:type hypothesis: str
|
|
:param ignore_case: Whether case-sensitive or not.
|
|
:type ignore_case: bool
|
|
:param remove_space: Whether remove internal space characters
|
|
:type remove_space: bool
|
|
:return: Character error rate.
|
|
:rtype: float
|
|
:raises ValueError: If the reference length is zero.
|
|
"""
|
|
edit_distance, ref_len = char_errors(reference, hypothesis, ignore_case,
|
|
remove_space)
|
|
|
|
if ref_len == 0:
|
|
raise ValueError("Length of reference should be greater than 0.")
|
|
|
|
cer = float(edit_distance) / ref_len
|
|
return cer
|
|
|
|
|
|
class ErrorCalculator():
|
|
"""Calculate CER and WER for E2E_ASR and CTC models during training.
|
|
|
|
:param y_hats: numpy array with predicted text
|
|
:param y_pads: numpy array with true (target) text
|
|
:param char_list: List[str]
|
|
:param sym_space: <space>
|
|
:param sym_blank: <blank>
|
|
:return:
|
|
"""
|
|
|
|
def __init__(self,
|
|
char_list,
|
|
sym_space,
|
|
sym_blank,
|
|
report_cer=False,
|
|
report_wer=False):
|
|
"""Construct an ErrorCalculator object."""
|
|
super().__init__()
|
|
|
|
self.report_cer = report_cer
|
|
self.report_wer = report_wer
|
|
|
|
self.char_list = char_list
|
|
self.space = sym_space
|
|
self.blank = sym_blank
|
|
self.idx_blank = self.char_list.index(self.blank)
|
|
if self.space in self.char_list:
|
|
self.idx_space = self.char_list.index(self.space)
|
|
else:
|
|
self.idx_space = None
|
|
|
|
def __call__(self, ys_hat, ys_pad, is_ctc=False):
|
|
"""Calculate sentence-level WER/CER score.
|
|
|
|
:param paddle.Tensor ys_hat: prediction (batch, seqlen)
|
|
:param paddle.Tensor ys_pad: reference (batch, seqlen)
|
|
:param bool is_ctc: calculate CER score for CTC
|
|
:return: sentence-level WER score
|
|
:rtype float
|
|
:return: sentence-level CER score
|
|
:rtype float
|
|
"""
|
|
cer, wer = None, None
|
|
if is_ctc:
|
|
return self.calculate_cer_ctc(ys_hat, ys_pad)
|
|
elif not self.report_cer and not self.report_wer:
|
|
return cer, wer
|
|
|
|
seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad)
|
|
if self.report_cer:
|
|
cer = self.calculate_cer(seqs_hat, seqs_true)
|
|
|
|
if self.report_wer:
|
|
wer = self.calculate_wer(seqs_hat, seqs_true)
|
|
return cer, wer
|
|
|
|
def calculate_cer_ctc(self, ys_hat, ys_pad):
|
|
"""Calculate sentence-level CER score for CTC.
|
|
|
|
:param paddle.Tensor ys_hat: prediction (batch, seqlen)
|
|
:param paddle.Tensor ys_pad: reference (batch, seqlen)
|
|
:return: average sentence-level CER score
|
|
:rtype float
|
|
"""
|
|
cers, char_ref_lens = [], []
|
|
for i, y in enumerate(ys_hat):
|
|
y_hat = [x[0] for x in groupby(y)]
|
|
y_true = ys_pad[i]
|
|
seq_hat, seq_true = [], []
|
|
for idx in y_hat:
|
|
idx = int(idx)
|
|
if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
|
|
seq_hat.append(self.char_list[int(idx)])
|
|
|
|
for idx in y_true:
|
|
idx = int(idx)
|
|
if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
|
|
seq_true.append(self.char_list[int(idx)])
|
|
|
|
hyp_chars = "".join(seq_hat)
|
|
ref_chars = "".join(seq_true)
|
|
if len(ref_chars) > 0:
|
|
cers.append(editdistance.eval(hyp_chars, ref_chars))
|
|
char_ref_lens.append(len(ref_chars))
|
|
|
|
cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None
|
|
return cer_ctc
|
|
|
|
def convert_to_char(self, ys_hat, ys_pad):
|
|
"""Convert index to character.
|
|
|
|
:param paddle.Tensor seqs_hat: prediction (batch, seqlen)
|
|
:param paddle.Tensor seqs_true: reference (batch, seqlen)
|
|
:return: token list of prediction
|
|
:rtype list
|
|
:return: token list of reference
|
|
:rtype list
|
|
"""
|
|
seqs_hat, seqs_true = [], []
|
|
for i, y_hat in enumerate(ys_hat):
|
|
y_true = ys_pad[i]
|
|
eos_true = np.where(y_true == -1)[0]
|
|
ymax = eos_true[0] if len(eos_true) > 0 else len(y_true)
|
|
# NOTE: padding index (-1) in y_true is used to pad y_hat
|
|
seq_hat = [self.char_list[int(idx)] for idx in y_hat[:ymax]]
|
|
seq_true = [
|
|
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
|
|
]
|
|
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
|
|
seq_hat_text = seq_hat_text.replace(self.blank, "")
|
|
seq_true_text = "".join(seq_true).replace(self.space, " ")
|
|
seqs_hat.append(seq_hat_text)
|
|
seqs_true.append(seq_true_text)
|
|
return seqs_hat, seqs_true
|
|
|
|
def calculate_cer(self, seqs_hat, seqs_true):
|
|
"""Calculate sentence-level CER score.
|
|
|
|
:param list seqs_hat: prediction
|
|
:param list seqs_true: reference
|
|
:return: average sentence-level CER score
|
|
:rtype float
|
|
"""
|
|
char_eds, char_ref_lens = [], []
|
|
for i, seq_hat_text in enumerate(seqs_hat):
|
|
seq_true_text = seqs_true[i]
|
|
hyp_chars = seq_hat_text.replace(" ", "")
|
|
ref_chars = seq_true_text.replace(" ", "")
|
|
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
|
|
char_ref_lens.append(len(ref_chars))
|
|
return float(sum(char_eds)) / sum(char_ref_lens)
|
|
|
|
def calculate_wer(self, seqs_hat, seqs_true):
|
|
"""Calculate sentence-level WER score.
|
|
|
|
:param list seqs_hat: prediction
|
|
:param list seqs_true: reference
|
|
:return: average sentence-level WER score
|
|
:rtype float
|
|
"""
|
|
word_eds, word_ref_lens = [], []
|
|
for i, seq_hat_text in enumerate(seqs_hat):
|
|
seq_true_text = seqs_true[i]
|
|
hyp_words = seq_hat_text.split()
|
|
ref_words = seq_true_text.split()
|
|
word_eds.append(editdistance.eval(hyp_words, ref_words))
|
|
word_ref_lens.append(len(ref_words))
|
|
return float(sum(word_eds)) / sum(word_ref_lens)
|