You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/training/scheduler.py

131 lines
4.3 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
from typing import Any
from typing import Dict
from typing import Text
from typing import Union
from paddle.optimizer.lr import LRScheduler
from typeguard import check_argument_types
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.dynamic_import import instance_class
from paddlespeech.s2t.utils.log import Log
__all__ = ["WarmupLR", "LRSchedulerFactory"]
logger = Log(__name__).getlog()
SCHEDULER_DICT = {
"noam": "paddle.optimizer.lr:NoamDecay",
"expdecaylr": "paddle.optimizer.lr:ExponentialDecay",
"piecewisedecay": "paddle.optimizer.lr:PiecewiseDecay",
}
def register_scheduler(cls):
"""Register scheduler."""
alias = cls.__name__.lower()
SCHEDULER_DICT[cls.__name__.lower()] = cls.__module__ + ":" + cls.__name__
return cls
@register_scheduler
class WarmupLR(LRScheduler):
"""The WarmupLR scheduler
This scheduler is almost same as NoamLR Scheduler except for following
difference:
NoamLR:
lr = optimizer.lr * model_size ** -0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
WarmupLR:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
Note that the maximum lr equals to optimizer.lr in this scheduler.
"""
def __init__(self,
warmup_steps: Union[int, float]=25000,
learning_rate=1.0,
last_epoch=-1,
verbose=False,
**kwargs):
assert check_argument_types()
self.warmup_steps = warmup_steps
super().__init__(learning_rate, last_epoch, verbose)
def __repr__(self):
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps}, lr={self.base_lr}, last_epoch={self.last_epoch})"
def get_lr(self):
# self.last_epoch start from zero
step_num = self.last_epoch + 1
return self.base_lr * self.warmup_steps**0.5 * min(
step_num**-0.5, step_num * self.warmup_steps**-1.5)
def set_step(self, step: int=None):
'''
It will update the learning rate in optimizer according to current ``epoch`` .
The new learning rate will take effect on next ``optimizer.step`` .
Args:
step (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.
Returns:
None
'''
self.step(epoch=step)
@register_scheduler
class ConstantLR(LRScheduler):
"""
Args:
learning_rate (float): The initial learning rate. It is a python float number.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``ConstantLR`` instance to schedule learning rate.
"""
def __init__(self, learning_rate, last_epoch=-1, verbose=False):
super().__init__(learning_rate, last_epoch, verbose)
def get_lr(self):
return self.base_lr
def dynamic_import_scheduler(module):
"""Import Scheduler class dynamically.
Args:
module (str): module_name:class_name or alias in `SCHEDULER_DICT`
Returns:
type: Scheduler class
"""
module_class = dynamic_import(module, SCHEDULER_DICT)
assert issubclass(module_class,
LRScheduler), f"{module} does not implement LRScheduler"
return module_class
class LRSchedulerFactory():
@classmethod
def from_args(cls, name: str, args: Dict[Text, Any]):
module_class = dynamic_import_scheduler(name.lower())
return instance_class(module_class, args)