You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/third_party/paddle_audio/frontend/kaldi_test.py

533 lines
25 KiB

from typing import Tuple
import numpy as np
import paddle
import unittest
import decimal
import numpy
import math
import logging
from pathlib import Path
from scipy.fftpack import dct
from third_party.paddle_audio.frontend import kaldi
def round_half_up(number):
return int(decimal.Decimal(number).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))
def rolling_window(a, window, step=1):
# http://ellisvalentiner.com/post/2017-03-21-np-strides-trick
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return numpy.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)[::step]
def do_dither(signal, dither_value=1.0):
signal += numpy.random.normal(size=signal.shape) * dither_value
return signal
def do_remove_dc_offset(signal):
signal -= numpy.mean(signal)
return signal
def do_preemphasis(signal, coeff=0.97):
"""perform preemphasis on the input signal.
:param signal: The signal to filter.
:param coeff: The preemphasis coefficient. 0 is no filter, default is 0.95.
:returns: the filtered signal.
"""
return numpy.append((1-coeff)*signal[0], signal[1:] - coeff * signal[:-1])
def framesig(sig, frame_len, frame_step, dither=1.0, preemph=0.97, remove_dc_offset=True, wintype='hamming', stride_trick=True):
"""Frame a signal into overlapping frames.
:param sig: the audio signal to frame.
:param frame_len: length of each frame measured in samples.
:param frame_step: number of samples after the start of the previous frame that the next frame should begin.
:param winfunc: the analysis window to apply to each frame. By default no window is applied.
:param stride_trick: use stride trick to compute the rolling window and window multiplication faster
:returns: an array of frames. Size is NUMFRAMES by frame_len.
"""
slen = len(sig)
frame_len = int(round_half_up(frame_len))
frame_step = int(round_half_up(frame_step))
if slen <= frame_len:
numframes = 1
else:
numframes = 1 + (( slen - frame_len) // frame_step)
# check kaldi/src/feat/feature-window.h
padsignal = sig[:(numframes-1)*frame_step+frame_len]
if wintype is 'povey':
win = numpy.empty(frame_len)
for i in range(frame_len):
win[i] = (0.5-0.5*numpy.cos(2*numpy.pi/(frame_len-1)*i))**0.85
else: # the hamming window
win = numpy.hamming(frame_len)
if stride_trick:
frames = rolling_window(padsignal, window=frame_len, step=frame_step)
else:
indices = numpy.tile(numpy.arange(0, frame_len), (numframes, 1)) + numpy.tile(
numpy.arange(0, numframes * frame_step, frame_step), (frame_len, 1)).T
indices = numpy.array(indices, dtype=numpy.int32)
frames = padsignal[indices]
win = numpy.tile(win, (numframes, 1))
frames = frames.astype(numpy.float32)
raw_frames = numpy.zeros(frames.shape)
for frm in range(frames.shape[0]):
frames[frm,:] = do_dither(frames[frm,:], dither) # dither
frames[frm,:] = do_remove_dc_offset(frames[frm,:]) # remove dc offset
raw_frames[frm,:] = frames[frm,:]
frames[frm,:] = do_preemphasis(frames[frm,:], preemph) # preemphasize
return frames * win, raw_frames
def magspec(frames, NFFT):
"""Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
:param frames: the array of frames. Each row is a frame.
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.
"""
if numpy.shape(frames)[1] > NFFT:
logging.warn(
'frame length (%d) is greater than FFT size (%d), frame will be truncated. Increase NFFT to avoid.',
numpy.shape(frames)[1], NFFT)
complex_spec = numpy.fft.rfft(frames, NFFT)
return numpy.absolute(complex_spec)
def powspec(frames, NFFT):
"""Compute the power spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
:param frames: the array of frames. Each row is a frame.
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the power spectrum of the corresponding frame.
"""
return numpy.square(magspec(frames, NFFT))
def mfcc(signal,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,
nfilt=23,nfft=512,lowfreq=20,highfreq=None,dither=1.0,remove_dc_offset=True,preemph=0.97,
ceplifter=22,useEnergy=True,wintype='povey'):
"""Compute MFCC features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:param samplerate: the samplerate of the signal we are working with.
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
:param numcep: the number of cepstrum to return, default 13
:param nfilt: the number of filters in the filterbank, default 26.
:param nfft: the FFT size. Default is 512.
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
:param ceplifter: apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.
:param appendEnergy: if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
:param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
:returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.
"""
feat,energy = fbank(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,dither,remove_dc_offset,preemph,wintype)
feat = numpy.log(feat)
feat = dct(feat, type=2, axis=1, norm='ortho')[:,:numcep]
feat = lifter(feat,ceplifter)
if useEnergy: feat[:,0] = numpy.log(energy) # replace first cepstral coefficient with log of frame energy
return feat
def fbank(signal,samplerate=16000,winlen=0.025,winstep=0.01,
nfilt=40,nfft=512,lowfreq=0,highfreq=None,dither=1.0,remove_dc_offset=True, preemph=0.97,
wintype='hamming'):
"""Compute Mel-filterbank energy features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:param samplerate: the samplerate of the signal we are working with.
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
:param nfilt: the number of filters in the filterbank, default 26.
:param nfft: the FFT size. Default is 512.
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
:param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming
winfunc=lambda x:numpy.ones((x,))
:returns: 2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The
second return value is the energy in each frame (total energy, unwindowed)
"""
highfreq= highfreq or samplerate/2
frames,raw_frames = sigproc.framesig(signal, winlen*samplerate, winstep*samplerate, dither, preemph, remove_dc_offset, wintype)
pspec = sigproc.powspec(frames,nfft) # nearly the same until this part
energy = numpy.sum(raw_frames**2,1) # this stores the raw energy in each frame
energy = numpy.where(energy == 0,numpy.finfo(float).eps,energy) # if energy is zero, we get problems with log
fb = get_filterbanks(nfilt,nfft,samplerate,lowfreq,highfreq)
feat = numpy.dot(pspec,fb.T) # compute the filterbank energies
feat = numpy.where(feat == 0,numpy.finfo(float).eps,feat) # if feat is zero, we get problems with log
return feat,energy
def logfbank(signal,samplerate=16000,winlen=0.025,winstep=0.01,
nfilt=40,nfft=512,lowfreq=64,highfreq=None,dither=1.0,remove_dc_offset=True,preemph=0.97,wintype='hamming'):
"""Compute log Mel-filterbank energy features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:param samplerate: the samplerate of the signal we are working with.
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
:param nfilt: the number of filters in the filterbank, default 26.
:param nfft: the FFT size. Default is 512.
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
:returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.
"""
feat,energy = fbank(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,dither, remove_dc_offset,preemph,wintype)
return numpy.log(feat)
def hz2mel(hz):
"""Convert a value in Hertz to Mels
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
"""
return 1127 * numpy.log(1+hz/700.0)
def mel2hz(mel):
"""Convert a value in Mels to Hertz
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
"""
return 700 * (numpy.exp(mel/1127.0)-1)
def get_filterbanks(nfilt=26,nfft=512,samplerate=16000,lowfreq=0,highfreq=None):
"""Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)
:param nfilt: the number of filters in the filterbank, default 20.
:param nfft: the FFT size. Default is 512.
:param samplerate: the samplerate of the signal we are working with. Affects mel spacing.
:param lowfreq: lowest band edge of mel filters, default 0 Hz
:param highfreq: highest band edge of mel filters, default samplerate/2
:returns: A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.
"""
highfreq= highfreq or samplerate/2
assert highfreq <= samplerate/2, "highfreq is greater than samplerate/2"
# compute points evenly spaced in mels
lowmel = hz2mel(lowfreq)
highmel = hz2mel(highfreq)
# check kaldi/src/feat/Mel-computations.h
fbank = numpy.zeros([nfilt,nfft//2+1])
mel_freq_delta = (highmel-lowmel)/(nfilt+1)
for j in range(0,nfilt):
leftmel = lowmel+j*mel_freq_delta
centermel = lowmel+(j+1)*mel_freq_delta
rightmel = lowmel+(j+2)*mel_freq_delta
for i in range(0,nfft//2):
mel=hz2mel(i*samplerate/nfft)
if mel>leftmel and mel<rightmel:
if mel<centermel:
fbank[j,i]=(mel-leftmel)/(centermel-leftmel)
else:
fbank[j,i]=(rightmel-mel)/(rightmel-centermel)
return fbank
def lifter(cepstra, L=22):
"""Apply a cepstral lifter the the matrix of cepstra. This has the effect of increasing the
magnitude of the high frequency DCT coeffs.
:param cepstra: the matrix of mel-cepstra, will be numframes * numcep in size.
:param L: the liftering coefficient to use. Default is 22. L <= 0 disables lifter.
"""
if L > 0:
nframes,ncoeff = numpy.shape(cepstra)
n = numpy.arange(ncoeff)
lift = 1 + (L/2.)*numpy.sin(numpy.pi*n/L)
return lift*cepstra
else:
# values of L <= 0, do nothing
return cepstra
def delta(feat, N):
"""Compute delta features from a feature vector sequence.
:param feat: A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector.
:param N: For each frame, calculate delta features based on preceding and following N frames
:returns: A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector.
"""
if N < 1:
raise ValueError('N must be an integer >= 1')
NUMFRAMES = len(feat)
denominator = 2 * sum([i**2 for i in range(1, N+1)])
delta_feat = numpy.empty_like(feat)
padded = numpy.pad(feat, ((N, N), (0, 0)), mode='edge') # padded version of feat
for t in range(NUMFRAMES):
delta_feat[t] = numpy.dot(numpy.arange(-N, N+1), padded[t : t+2*N+1]) / denominator # [t : t+2*N+1] == [(N+t)-N : (N+t)+N+1]
return delta_feat
##### modify for test ######
def framesig_without_dither_dc_preemphasize(sig, frame_len, frame_step, wintype='hamming', stride_trick=True):
"""Frame a signal into overlapping frames.
:param sig: the audio signal to frame.
:param frame_len: length of each frame measured in samples.
:param frame_step: number of samples after the start of the previous frame that the next frame should begin.
:param winfunc: the analysis window to apply to each frame. By default no window is applied.
:param stride_trick: use stride trick to compute the rolling window and window multiplication faster
:returns: an array of frames. Size is NUMFRAMES by frame_len.
"""
slen = len(sig)
frame_len = int(round_half_up(frame_len))
frame_step = int(round_half_up(frame_step))
if slen <= frame_len:
numframes = 1
else:
numframes = 1 + (( slen - frame_len) // frame_step)
# check kaldi/src/feat/feature-window.h
padsignal = sig[:(numframes-1)*frame_step+frame_len]
if wintype is 'povey':
win = numpy.empty(frame_len)
for i in range(frame_len):
win[i] = (0.5-0.5*numpy.cos(2*numpy.pi/(frame_len-1)*i))**0.85
elif wintype == '':
win = numpy.ones(frame_len)
elif wintype == 'hann':
win = numpy.hanning(frame_len)
else: # the hamming window
win = numpy.hamming(frame_len)
if stride_trick:
frames = rolling_window(padsignal, window=frame_len, step=frame_step)
else:
indices = numpy.tile(numpy.arange(0, frame_len), (numframes, 1)) + numpy.tile(
numpy.arange(0, numframes * frame_step, frame_step), (frame_len, 1)).T
indices = numpy.array(indices, dtype=numpy.int32)
frames = padsignal[indices]
win = numpy.tile(win, (numframes, 1))
frames = frames.astype(numpy.float32)
raw_frames = frames
return frames * win, raw_frames
def frames(signal,samplerate=16000,winlen=0.025,winstep=0.01,
nfilt=40,nfft=512,lowfreq=0,highfreq=None, wintype='hamming'):
frames_with_win, raw_frames = framesig_without_dither_dc_preemphasize(signal, winlen*samplerate, winstep*samplerate, wintype)
return frames_with_win, raw_frames
def complexspec(frames, NFFT):
"""Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
:param frames: the array of frames. Each row is a frame.
:param NFFT: the FFT length to use. If NFFT > frame_len, the frames are zero-padded.
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.
"""
if numpy.shape(frames)[1] > NFFT:
logging.warn(
'frame length (%d) is greater than FFT size (%d), frame will be truncated. Increase NFFT to avoid.',
numpy.shape(frames)[1], NFFT)
complex_spec = numpy.fft.rfft(frames, NFFT)
return complex_spec
def stft_with_window(signal,samplerate=16000,winlen=0.025,winstep=0.01,
nfilt=40,nfft=512,lowfreq=0,highfreq=None,dither=1.0,remove_dc_offset=True, preemph=0.97,
wintype='hamming'):
frames_with_win, raw_frames = framesig_without_dither_dc_preemphasize(signal, winlen*samplerate, winstep*samplerate, wintype)
spec = magspec(frames_with_win, nfft) # nearly the same until this part
scomplex = complexspec(frames_with_win, nfft)
rspec = magspec(raw_frames, nfft)
rcomplex = complexspec(raw_frames, nfft)
return spec, scomplex, rspec, rcomplex
class TestKaldiFE(unittest.TestCase):
def setUp(self):
self. this_dir = Path(__file__).parent
self.wavpath = str(self.this_dir / 'english.wav')
self.winlen=0.025 # ms
self.winstep=0.01 # ms
self.nfft=512
self.lowfreq = 0
self.highfreq = None
self.wintype='hamm'
self.nfilt=40
paddle.set_device('cpu')
def test_read(self):
import scipy.io.wavfile as wav
rate, sig = wav.read(self.wavpath)
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
self.assertTrue(np.all(sig == wav))
self.assertEqual(rate, sr)
def test_frames(self):
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
_, fs = frames(wav, samplerate=sr,
winlen=self.winlen, winstep=self.winstep,
nfilt=self.nfilt, nfft=self.nfft,
lowfreq=self.lowfreq, highfreq=self.highfreq,
wintype=self.wintype)
t_wav = paddle.to_tensor([wav], dtype='float32')
t_wavlen = paddle.to_tensor([len(wav)])
t_fs, t_nframe = kaldi.frames(t_wav, t_wavlen, sr, self.winlen, self.winstep, clip=False)
t_fs = t_fs.astype(fs.dtype)[0]
self.assertEqual(t_nframe.item(), fs.shape[0])
self.assertTrue(np.allclose(t_fs.numpy(), fs))
def test_stft(self):
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
for wintype in ['', 'hamm', 'hann', 'povey']:
self.wintype=wintype
_, stft_c_win, _, _ = stft_with_window(wav, samplerate=sr,
winlen=self.winlen, winstep=self.winstep,
nfilt=self.nfilt, nfft=self.nfft,
lowfreq=self.lowfreq, highfreq=self.highfreq,
wintype=self.wintype)
t_wav = paddle.to_tensor([wav], dtype='float32')
t_wavlen = paddle.to_tensor([len(wav)])
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
t_stft = t_stft.astype(stft_c_win.real.dtype)[0]
t_real = t_stft[:, :, 0]
t_imag = t_stft[:, :, 1]
self.assertEqual(t_nframe.item(), stft_c_win.real.shape[0])
self.assertLess(np.sum(t_real.numpy()) - np.sum(stft_c_win.real), 1)
self.assertTrue(np.allclose(t_real.numpy(), stft_c_win.real, atol=1e-1))
self.assertLess(np.sum(t_imag.numpy()) - np.sum(stft_c_win.imag), 1)
self.assertTrue(np.allclose(t_imag.numpy(), stft_c_win.imag, atol=1e-1))
def test_magspec(self):
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
for wintype in ['', 'hamm', 'hann', 'povey']:
self.wintype=wintype
stft_win, _, _, _ = stft_with_window(wav, samplerate=sr,
winlen=self.winlen, winstep=self.winstep,
nfilt=self.nfilt, nfft=self.nfft,
lowfreq=self.lowfreq, highfreq=self.highfreq,
wintype=self.wintype)
t_wav = paddle.to_tensor([wav], dtype='float32')
t_wavlen = paddle.to_tensor([len(wav)])
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
t_stft = t_stft.astype(stft_win.dtype)
t_spec = kaldi.magspec(t_stft)[0]
self.assertEqual(t_nframe.item(), stft_win.shape[0])
self.assertLess(np.sum(t_spec.numpy()) - np.sum(stft_win), 1)
self.assertTrue(np.allclose(t_spec.numpy(), stft_win, atol=1e-1))
def test_magsepc_winprocess(self):
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
fs, _= framesig(wav, self.winlen*sr, self.winstep*sr,
dither=0.0, preemph=0.97, remove_dc_offset=True, wintype='povey', stride_trick=True)
spec = magspec(fs, self.nfft) # nearly the same until this part
t_wav = paddle.to_tensor([wav], dtype='float32')
t_wavlen = paddle.to_tensor([len(wav)])
stft_class = kaldi.STFT(
self.nfft, sr, self.winlen, self.winstep,
window_type='povey', dither=0.0, preemph_coeff=0.97, remove_dc_offset=True, clip=False)
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
t_stft = t_stft.astype(spec.dtype)
t_spec = kaldi.magspec(t_stft)[0]
self.assertEqual(t_nframe.item(), fs.shape[0])
self.assertLess(np.sum(t_spec.numpy()) - np.sum(spec), 1)
self.assertTrue(np.allclose(t_spec.numpy(), spec, atol=1e-1))
def test_powspec(self):
sr, wav = kaldi.read(self.wavpath)
wav = wav[:, 0]
for wintype in ['', 'hamm', 'hann', 'povey']:
self.wintype=wintype
stft_win, _, _, _ = stft_with_window(wav, samplerate=sr,
winlen=self.winlen, winstep=self.winstep,
nfilt=self.nfilt, nfft=self.nfft,
lowfreq=self.lowfreq, highfreq=self.highfreq,
wintype=self.wintype)
stft_win = np.square(stft_win)
t_wav = paddle.to_tensor([wav], dtype='float32')
t_wavlen = paddle.to_tensor([len(wav)])
stft_class = kaldi.STFT(self.nfft, sr, self.winlen, self.winstep, window_type=self.wintype, dither=0.0, preemph_coeff=0.0, remove_dc_offset=False, clip=False)
t_stft, t_nframe = stft_class(t_wav, t_wavlen)
t_stft = t_stft.astype(stft_win.dtype)
t_spec = kaldi.powspec(t_stft)[0]
self.assertEqual(t_nframe.item(), stft_win.shape[0])
self.assertLess(np.sum(t_spec.numpy() - stft_win), 5e4)
self.assertTrue(np.allclose(t_spec.numpy(), stft_win, atol=1e2))
# from python_speech_features import mfcc
# from python_speech_features import delta
# from python_speech_features import logfbank
# import scipy.io.wavfile as wav
# (rate,sig) = wav.read("english.wav")
# # note that generally nfilt=40 is used for speech recognition
# fbank_feat = logfbank(sig,nfilt=23,lowfreq=20,dither=0,wintype='povey')
# # the computed fbank coefficents of english.wav with dimension [110,23]
# # [ 12.2865 12.6906 13.1765 15.714 16.064 15.7553 16.5746 16.9205 16.6472 16.1302 16.4576 16.7326 16.8864 17.7215 18.88 19.1377 19.1495 18.6683 18.3886 20.3506 20.2772 18.8248 18.1899
# # 11.9198 13.146 14.7215 15.8642 17.4288 16.394 16.8238 16.1095 16.4297 16.6331 16.3163 16.5093 17.4981 18.3429 19.6555 19.6263 19.8435 19.0534 19.001 20.0287 19.7707 19.5852 19.1112
# # ...
# # ...
# # the same with that using kaldi commands: compute-fbank-feats --dither=0.0
# mfcc_feat = mfcc(sig,dither=0,useEnergy=True,wintype='povey')
# # the computed mfcc coefficents of english.wav with dimension [110,13]
# # [ 17.1337 -23.3651 -7.41751 -7.73686 -21.3682 -8.93884 -3.70843 4.68346 -16.0676 12.782 -7.24054 8.25089 10.7292
# # 17.1692 -23.3028 -5.61872 -4.0075 -23.287 -20.6101 -5.51584 -6.15273 -14.4333 8.13052 -0.0345329 2.06274 -0.564298
# # ...
# # ...
# # the same with that using kaldi commands: compute-mfcc-feats --dither=0.0
if __name__ == '__main__':
unittest.main()