You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
10 KiB
309 lines
10 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Style encoder of GST-Tacotron."""
|
|
|
|
from typeguard import check_argument_types
|
|
from typing import Sequence
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from parakeet.modules.fastspeech2_transformer.attention import MultiHeadedAttention as BaseMultiHeadedAttention
|
|
|
|
|
|
class StyleEncoder(nn.Layer):
|
|
"""Style encoder.
|
|
|
|
This module is style encoder introduced in `Style Tokens: Unsupervised Style
|
|
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
|
|
|
|
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
|
|
Speech Synthesis`: https://arxiv.org/abs/1803.09017
|
|
|
|
Parameters
|
|
----------
|
|
idim : int, optional
|
|
Dimension of the input mel-spectrogram.
|
|
gst_tokens : int, optional
|
|
The number of GST embeddings.
|
|
gst_token_dim : int, optional
|
|
Dimension of each GST embedding.
|
|
gst_heads : int, optional
|
|
The number of heads in GST multihead attention.
|
|
conv_layers : int, optional
|
|
The number of conv layers in the reference encoder.
|
|
conv_chans_list : Sequence[int], optional
|
|
List of the number of channels of conv layers in the referece encoder.
|
|
conv_kernel_size : int, optional
|
|
Kernal size of conv layers in the reference encoder.
|
|
conv_stride : int, optional
|
|
Stride size of conv layers in the reference encoder.
|
|
gru_layers : int, optional
|
|
The number of GRU layers in the reference encoder.
|
|
gru_units : int, optional
|
|
The number of GRU units in the reference encoder.
|
|
|
|
Todo
|
|
----------
|
|
* Support manual weight specification in inference.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
idim: int=80,
|
|
gst_tokens: int=10,
|
|
gst_token_dim: int=256,
|
|
gst_heads: int=4,
|
|
conv_layers: int=6,
|
|
conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
|
|
conv_kernel_size: int=3,
|
|
conv_stride: int=2,
|
|
gru_layers: int=1,
|
|
gru_units: int=128, ):
|
|
"""Initilize global style encoder module."""
|
|
assert check_argument_types()
|
|
super(StyleEncoder, self).__init__()
|
|
|
|
self.ref_enc = ReferenceEncoder(
|
|
idim=idim,
|
|
conv_layers=conv_layers,
|
|
conv_chans_list=conv_chans_list,
|
|
conv_kernel_size=conv_kernel_size,
|
|
conv_stride=conv_stride,
|
|
gru_layers=gru_layers,
|
|
gru_units=gru_units, )
|
|
self.stl = StyleTokenLayer(
|
|
ref_embed_dim=gru_units,
|
|
gst_tokens=gst_tokens,
|
|
gst_token_dim=gst_token_dim,
|
|
gst_heads=gst_heads, )
|
|
|
|
def forward(self, speech: paddle.Tensor) -> paddle.Tensor:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
speech (Tensor): Batch of padded target features (B, Lmax, odim).
|
|
|
|
Returns:
|
|
Tensor: Style token embeddings (B, token_dim).
|
|
|
|
"""
|
|
ref_embs = self.ref_enc(speech)
|
|
style_embs = self.stl(ref_embs)
|
|
|
|
return style_embs
|
|
|
|
|
|
class ReferenceEncoder(nn.Layer):
|
|
"""Reference encoder module.
|
|
|
|
This module is refernece encoder introduced in `Style Tokens: Unsupervised Style
|
|
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
|
|
|
|
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
|
|
Speech Synthesis`: https://arxiv.org/abs/1803.09017
|
|
|
|
Parameters
|
|
----------
|
|
idim : int, optional
|
|
Dimension of the input mel-spectrogram.
|
|
conv_layers : int, optional
|
|
The number of conv layers in the reference encoder.
|
|
conv_chans_list: : Sequence[int], optional
|
|
List of the number of channels of conv layers in the referece encoder.
|
|
conv_kernel_size : int, optional
|
|
Kernal size of conv layers in the reference encoder.
|
|
conv_stride : int, optional
|
|
Stride size of conv layers in the reference encoder.
|
|
gru_layers : int, optional
|
|
The number of GRU layers in the reference encoder.
|
|
gru_units : int, optional
|
|
The number of GRU units in the reference encoder.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
idim=80,
|
|
conv_layers: int=6,
|
|
conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
|
|
conv_kernel_size: int=3,
|
|
conv_stride: int=2,
|
|
gru_layers: int=1,
|
|
gru_units: int=128, ):
|
|
"""Initilize reference encoder module."""
|
|
assert check_argument_types()
|
|
super(ReferenceEncoder, self).__init__()
|
|
|
|
# check hyperparameters are valid
|
|
assert conv_kernel_size % 2 == 1, "kernel size must be odd."
|
|
assert (
|
|
len(conv_chans_list) == conv_layers
|
|
), "the number of conv layers and length of channels list must be the same."
|
|
|
|
convs = []
|
|
padding = (conv_kernel_size - 1) // 2
|
|
for i in range(conv_layers):
|
|
conv_in_chans = 1 if i == 0 else conv_chans_list[i - 1]
|
|
conv_out_chans = conv_chans_list[i]
|
|
convs += [
|
|
nn.Conv2D(
|
|
conv_in_chans,
|
|
conv_out_chans,
|
|
kernel_size=conv_kernel_size,
|
|
stride=conv_stride,
|
|
padding=padding,
|
|
# Do not use bias due to the following batch norm
|
|
bias_attr=False, ),
|
|
nn.BatchNorm2D(conv_out_chans),
|
|
nn.ReLU(),
|
|
]
|
|
self.convs = nn.Sequential(*convs)
|
|
|
|
self.conv_layers = conv_layers
|
|
self.kernel_size = conv_kernel_size
|
|
self.stride = conv_stride
|
|
self.padding = padding
|
|
|
|
# get the number of GRU input units
|
|
gru_in_units = idim
|
|
for i in range(conv_layers):
|
|
gru_in_units = (gru_in_units - conv_kernel_size + 2 * padding
|
|
) // conv_stride + 1
|
|
gru_in_units *= conv_out_chans
|
|
self.gru = nn.GRU(gru_in_units, gru_units, gru_layers, time_major=False)
|
|
|
|
def forward(self, speech: paddle.Tensor) -> paddle.Tensor:
|
|
"""Calculate forward propagation.
|
|
|
|
Parameters
|
|
----------
|
|
speech : Tensor
|
|
Batch of padded target features (B, Lmax, idim).
|
|
|
|
Return
|
|
----------
|
|
Tensor
|
|
Reference embedding (B, gru_units)
|
|
|
|
"""
|
|
batch_size = speech.shape[0]
|
|
# (B, 1, Lmax, idim)
|
|
xs = speech.unsqueeze(1)
|
|
# (B, Lmax', conv_out_chans, idim')
|
|
hs = self.convs(xs).transpose([0, 2, 1, 3])
|
|
time_length = hs.shape[1]
|
|
# (B, Lmax', gru_units)
|
|
hs = hs.reshape(shape=[batch_size, time_length, -1])
|
|
self.gru.flatten_parameters()
|
|
# (gru_layers, batch_size, gru_units)
|
|
_, ref_embs = self.gru(hs)
|
|
# (batch_size, gru_units)
|
|
ref_embs = ref_embs[-1]
|
|
|
|
return ref_embs
|
|
|
|
|
|
class StyleTokenLayer(nn.Layer):
|
|
"""Style token layer module.
|
|
|
|
This module is style token layer introduced in `Style Tokens: Unsupervised Style
|
|
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
|
|
|
|
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
|
|
Speech Synthesis`: https://arxiv.org/abs/1803.09017
|
|
|
|
Parameters
|
|
----------
|
|
ref_embed_dim : int, optional
|
|
Dimension of the input reference embedding.
|
|
gst_tokens : int, optional
|
|
The number of GST embeddings.
|
|
gst_token_dim : int, optional
|
|
Dimension of each GST embedding.
|
|
gst_heads : int, optional
|
|
The number of heads in GST multihead attention.
|
|
dropout_rate : float, optional
|
|
Dropout rate in multi-head attention.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
ref_embed_dim: int=128,
|
|
gst_tokens: int=10,
|
|
gst_token_dim: int=256,
|
|
gst_heads: int=4,
|
|
dropout_rate: float=0.0, ):
|
|
"""Initilize style token layer module."""
|
|
assert check_argument_types()
|
|
super(StyleTokenLayer, self).__init__()
|
|
|
|
gst_embs = paddle.randn(shape=[gst_tokens, gst_token_dim // gst_heads])
|
|
self.gst_embs = paddle.create_parameter(
|
|
shape=gst_embs.shape,
|
|
dtype=str(gst_embs.numpy().dtype),
|
|
default_initializer=paddle.nn.initializer.Assign(gst_embs))
|
|
self.mha = MultiHeadedAttention(
|
|
q_dim=ref_embed_dim,
|
|
k_dim=gst_token_dim // gst_heads,
|
|
v_dim=gst_token_dim // gst_heads,
|
|
n_head=gst_heads,
|
|
n_feat=gst_token_dim,
|
|
dropout_rate=dropout_rate, )
|
|
|
|
def forward(self, ref_embs: paddle.Tensor) -> paddle.Tensor:
|
|
"""Calculate forward propagation.
|
|
|
|
Parameters
|
|
----------
|
|
ref_embs : Tensor
|
|
Reference embeddings (B, ref_embed_dim).
|
|
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Style token embeddings (B, gst_token_dim).
|
|
|
|
"""
|
|
batch_size = ref_embs.shape[0]
|
|
# (num_tokens, token_dim) -> (batch_size, num_tokens, token_dim)
|
|
gst_embs = paddle.tanh(self.gst_embs).unsqueeze(0).expand(
|
|
[batch_size, -1, -1])
|
|
# (batch_size, 1 ,ref_embed_dim)
|
|
ref_embs = ref_embs.unsqueeze(1)
|
|
style_embs = self.mha(ref_embs, gst_embs, gst_embs, None)
|
|
|
|
return style_embs.squeeze(1)
|
|
|
|
|
|
class MultiHeadedAttention(BaseMultiHeadedAttention):
|
|
"""Multi head attention module with different input dimension."""
|
|
|
|
def __init__(self, q_dim, k_dim, v_dim, n_head, n_feat, dropout_rate=0.0):
|
|
"""Initialize multi head attention module."""
|
|
# NOTE(kan-bayashi): Do not use super().__init__() here since we want to
|
|
# overwrite BaseMultiHeadedAttention.__init__() method.
|
|
nn.Layer.__init__(self)
|
|
assert n_feat % n_head == 0
|
|
# We assume d_v always equals d_k
|
|
self.d_k = n_feat // n_head
|
|
self.h = n_head
|
|
self.linear_q = nn.Linear(q_dim, n_feat)
|
|
self.linear_k = nn.Linear(k_dim, n_feat)
|
|
self.linear_v = nn.Linear(v_dim, n_feat)
|
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
|
self.attn = None
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|