You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/other/tts_finetune/tts3/finetune.py

192 lines
6.1 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from pathlib import Path
from typing import Union
import yaml
from local.check_oov import get_check_result
from local.extract import extract_feature
from local.label_process import get_single_label
from local.prepare_env import generate_finetune_env
from paddle import distributed as dist
from yacs.config import CfgNode
from paddlespeech.t2s.exps.fastspeech2.train import train_sp
from utils.gen_duration_from_textgrid import gen_duration_from_textgrid
DICT_EN = 'tools/aligner/cmudict-0.7b'
DICT_ZH = 'tools/aligner/simple.lexicon'
MODEL_DIR_EN = 'tools/aligner/vctk_model.zip'
MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip'
MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml'
MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml'
MFA_PATH = 'tools/montreal-forced-aligner/bin'
os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH']
class TrainArgs():
def __init__(self, ngpu, config_file, dump_dir: Path, output_dir: Path):
self.config = str(config_file)
self.train_metadata = str(dump_dir / "train/norm/metadata.jsonl")
self.dev_metadata = str(dump_dir / "dev/norm/metadata.jsonl")
self.output_dir = str(output_dir)
self.ngpu = ngpu
self.phones_dict = str(dump_dir / "phone_id_map.txt")
self.speaker_dict = str(dump_dir / "speaker_id_map.txt")
self.voice_cloning = False
def get_mfa_result(
input_dir: Union[str, Path],
mfa_dir: Union[str, Path],
lang: str='en', ):
"""get mfa result
Args:
input_dir (Union[str, Path]): input dir including wav file and label
mfa_dir (Union[str, Path]): mfa result dir
lang (str, optional): input audio language. Defaults to 'en'.
"""
# MFA
if lang == 'en':
DICT = DICT_EN
MODEL_DIR = MODEL_DIR_EN
elif lang == 'zh':
DICT = DICT_ZH
MODEL_DIR = MODEL_DIR_ZH
else:
print('please input right lang!!')
CMD = 'mfa_align' + ' ' + str(
input_dir) + ' ' + DICT + ' ' + MODEL_DIR + ' ' + str(mfa_dir)
os.system(CMD)
if __name__ == '__main__':
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--input_dir",
type=str,
default="./input/baker_mini",
help="directory containing audio and label file")
parser.add_argument(
"--pretrained_model_dir",
type=str,
default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0",
help="Path to pretrained model")
parser.add_argument(
"--mfa_dir",
type=str,
default="./mfa_result",
help="directory to save aligned files")
parser.add_argument(
"--dump_dir",
type=str,
default="./dump",
help="directory to save feature files and metadata.")
parser.add_argument(
"--output_dir",
type=str,
default="./exp/default/",
help="directory to save finetune model.")
parser.add_argument(
'--lang',
type=str,
default='zh',
choices=['zh', 'en'],
help='Choose input audio language. zh or en')
parser.add_argument(
"--ngpu", type=int, default=2, help="if ngpu=0, use cpu.")
parser.add_argument("--epoch", type=int, default=100, help="finetune epoch")
parser.add_argument(
"--batch_size",
type=int,
default=-1,
help="batch size, default -1 means same as pretrained model")
args = parser.parse_args()
fs = 24000
n_shift = 300
input_dir = Path(args.input_dir).expanduser()
mfa_dir = Path(args.mfa_dir).expanduser()
mfa_dir.mkdir(parents=True, exist_ok=True)
dump_dir = Path(args.dump_dir).expanduser()
dump_dir.mkdir(parents=True, exist_ok=True)
output_dir = Path(args.output_dir).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
pretrained_model_dir = Path(args.pretrained_model_dir).expanduser()
# read config
config_file = pretrained_model_dir / "default.yaml"
with open(config_file) as f:
config = CfgNode(yaml.safe_load(f))
config.max_epoch = config.max_epoch + args.epoch
if args.batch_size > 0:
config.batch_size = args.batch_size
if args.lang == 'en':
lexicon_file = DICT_EN
mfa_phone_file = MFA_PHONE_EN
elif args.lang == 'zh':
lexicon_file = DICT_ZH
mfa_phone_file = MFA_PHONE_ZH
else:
print('please input right lang!!')
am_phone_file = pretrained_model_dir / "phone_id_map.txt"
label_file = input_dir / "labels.txt"
#check phone for mfa and am finetune
oov_words, oov_files, oov_file_words = get_check_result(
label_file, lexicon_file, mfa_phone_file, am_phone_file)
input_dir = get_single_label(label_file, oov_files, input_dir)
# get mfa result
get_mfa_result(input_dir, mfa_dir, args.lang)
# # generate durations.txt
duration_file = "./durations.txt"
gen_duration_from_textgrid(mfa_dir, duration_file, fs, n_shift)
# generate phone and speaker map files
extract_feature(duration_file, config, input_dir, dump_dir,
pretrained_model_dir)
# create finetune env
generate_finetune_env(output_dir, pretrained_model_dir)
# create a new args for training
train_args = TrainArgs(args.ngpu, config_file, dump_dir, output_dir)
# finetune models
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (train_args, config), nprocs=args.ngpu)
else:
train_sp(train_args, config)