You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
4.6 KiB
127 lines
4.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import collections
|
|
import os
|
|
import random
|
|
from typing import List
|
|
from typing import Tuple
|
|
|
|
from ..utils import DATA_HOME
|
|
from ..utils.download import download_and_decompress
|
|
from .dataset import AudioClassificationDataset
|
|
|
|
__all__ = ['TESS']
|
|
|
|
|
|
class TESS(AudioClassificationDataset):
|
|
"""
|
|
TESS is a set of 200 target words were spoken in the carrier phrase
|
|
"Say the word _____' by two actresses (aged 26 and 64 years) and
|
|
recordings were made of the set portraying each of seven emotions(anger,
|
|
disgust, fear, happiness, pleasant surprise, sadness, and neutral).
|
|
There are 2800 stimuli in total.
|
|
|
|
Reference:
|
|
Toronto emotional speech set (TESS)
|
|
https://doi.org/10.5683/SP2/E8H2MF
|
|
"""
|
|
|
|
archieves = [
|
|
{
|
|
'url':
|
|
'https://bj.bcebos.com/paddleaudio/datasets/TESS_Toronto_emotional_speech_set.zip',
|
|
'md5':
|
|
'1465311b24d1de704c4c63e4ccc470c7',
|
|
},
|
|
]
|
|
label_list = [
|
|
'angry',
|
|
'disgust',
|
|
'fear',
|
|
'happy',
|
|
'neutral',
|
|
'ps', # pleasant surprise
|
|
'sad',
|
|
]
|
|
meta_info = collections.namedtuple('META_INFO',
|
|
('speaker', 'word', 'emotion'))
|
|
audio_path = 'TESS_Toronto_emotional_speech_set'
|
|
|
|
def __init__(self,
|
|
mode='train',
|
|
seed=0,
|
|
n_folds=5,
|
|
split=1,
|
|
feat_type='raw',
|
|
**kwargs):
|
|
"""
|
|
Ags:
|
|
mode (:obj:`str`, `optional`, defaults to `train`):
|
|
It identifies the dataset mode (train or dev).
|
|
seed (:obj:`int`, `optional`, defaults to 0):
|
|
Set the random seed to shuffle samples.
|
|
n_folds (:obj:`int`, `optional`, defaults to 5):
|
|
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
|
|
split (:obj:`int`, `optional`, defaults to 1):
|
|
It specify the fold of dev dataset.
|
|
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
|
It identifies the feature type that user wants to extrace of an audio file.
|
|
"""
|
|
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
|
|
files, labels = self._get_data(mode, seed, n_folds, split)
|
|
super(TESS, self).__init__(
|
|
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
|
|
|
def _get_meta_info(self, files) -> List[collections.namedtuple]:
|
|
ret = []
|
|
for file in files:
|
|
basename_without_extend = os.path.basename(file)[:-4]
|
|
ret.append(self.meta_info(*basename_without_extend.split('_')))
|
|
return ret
|
|
|
|
def _get_data(self, mode, seed, n_folds,
|
|
split) -> Tuple[List[str], List[int]]:
|
|
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)):
|
|
download_and_decompress(self.archieves, DATA_HOME)
|
|
|
|
wav_files = []
|
|
for root, _, files in os.walk(os.path.join(DATA_HOME, self.audio_path)):
|
|
for file in files:
|
|
if file.endswith('.wav'):
|
|
wav_files.append(os.path.join(root, file))
|
|
|
|
random.seed(seed) # shuffle samples to split data
|
|
random.shuffle(
|
|
wav_files
|
|
) # make sure using the same seed to create train and dev dataset
|
|
meta_info = self._get_meta_info(wav_files)
|
|
|
|
files = []
|
|
labels = []
|
|
n_samples_per_fold = len(meta_info) // n_folds
|
|
for idx, sample in enumerate(meta_info):
|
|
_, _, emotion = sample
|
|
target = self.label_list.index(emotion)
|
|
fold = idx // n_samples_per_fold + 1
|
|
|
|
if mode == 'train' and int(fold) != split:
|
|
files.append(wav_files[idx])
|
|
labels.append(target)
|
|
|
|
if mode != 'train' and int(fold) == split:
|
|
files.append(wav_files[idx])
|
|
labels.append(target)
|
|
|
|
return files, labels
|