You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
5.3 KiB
165 lines
5.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections import OrderedDict
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
|
|
from paddlespeech.s2t.modules.align import Conv2D
|
|
from paddlespeech.s2t.modules.align import Linear
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = ["get_activation", "brelu", "LinearGLUBlock", "ConvGLUBlock", "GLU"]
|
|
|
|
|
|
def brelu(x, t_min=0.0, t_max=24.0, name=None):
|
|
# paddle.to_tensor is dygraph_only can not work under JIT
|
|
t_min = paddle.full(shape=[1], fill_value=t_min, dtype='float32')
|
|
t_max = paddle.full(shape=[1], fill_value=t_max, dtype='float32')
|
|
return x.maximum(t_min).minimum(t_max)
|
|
|
|
|
|
class GLU(nn.Layer):
|
|
"""Gated Linear Units (GLU) Layer"""
|
|
|
|
def __init__(self, dim: int=-1):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, xs):
|
|
return F.glu(xs, axis=self.dim)
|
|
|
|
|
|
class LinearGLUBlock(nn.Layer):
|
|
"""A linear Gated Linear Units (GLU) block."""
|
|
|
|
def __init__(self, idim: int):
|
|
""" GLU.
|
|
Args:
|
|
idim (int): input and output dimension
|
|
"""
|
|
super().__init__()
|
|
self.fc = Linear(idim, idim * 2)
|
|
|
|
def forward(self, xs):
|
|
return glu(self.fc(xs), dim=-1)
|
|
|
|
|
|
class ConvGLUBlock(nn.Layer):
|
|
def __init__(self, kernel_size, in_ch, out_ch, bottlececk_dim=0,
|
|
dropout=0.):
|
|
"""A convolutional Gated Linear Units (GLU) block.
|
|
|
|
Args:
|
|
kernel_size (int): kernel size
|
|
in_ch (int): number of input channels
|
|
out_ch (int): number of output channels
|
|
bottlececk_dim (int): dimension of the bottleneck layers for computational efficiency. Defaults to 0.
|
|
dropout (float): dropout probability. Defaults to 0..
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.conv_residual = None
|
|
if in_ch != out_ch:
|
|
self.conv_residual = nn.utils.weight_norm(
|
|
Conv2D(
|
|
in_channels=in_ch, out_channels=out_ch, kernel_size=(1, 1)),
|
|
name='weight',
|
|
dim=0)
|
|
self.dropout_residual = nn.Dropout(p=dropout)
|
|
|
|
self.pad_left = nn.Pad2d((0, 0, kernel_size - 1, 0), 0)
|
|
|
|
layers = OrderedDict()
|
|
if bottlececk_dim == 0:
|
|
layers['conv'] = nn.utils.weight_norm(
|
|
Conv2D(
|
|
in_channels=in_ch,
|
|
out_channels=out_ch * 2,
|
|
kernel_size=(kernel_size, 1)),
|
|
name='weight',
|
|
dim=0)
|
|
# TODO(hirofumi0810): padding?
|
|
layers['dropout'] = nn.Dropout(p=dropout)
|
|
layers['glu'] = GLU()
|
|
|
|
elif bottlececk_dim > 0:
|
|
layers['conv_in'] = nn.utils.weight_norm(
|
|
nn.Conv2D(
|
|
in_channels=in_ch,
|
|
out_channels=bottlececk_dim,
|
|
kernel_size=(1, 1)),
|
|
name='weight',
|
|
dim=0)
|
|
layers['dropout_in'] = nn.Dropout(p=dropout)
|
|
layers['conv_bottleneck'] = nn.utils.weight_norm(
|
|
Conv2D(
|
|
in_channels=bottlececk_dim,
|
|
out_channels=bottlececk_dim,
|
|
kernel_size=(kernel_size, 1)),
|
|
name='weight',
|
|
dim=0)
|
|
layers['dropout'] = nn.Dropout(p=dropout)
|
|
layers['glu'] = GLU()
|
|
layers['conv_out'] = nn.utils.weight_norm(
|
|
Conv2D(
|
|
in_channels=bottlececk_dim,
|
|
out_channels=out_ch * 2,
|
|
kernel_size=(1, 1)),
|
|
name='weight',
|
|
dim=0)
|
|
layers['dropout_out'] = nn.Dropout(p=dropout)
|
|
|
|
self.layers = nn.Sequential(layers)
|
|
|
|
def forward(self, xs):
|
|
"""Forward pass.
|
|
Args:
|
|
xs (FloatTensor): `[B, in_ch, T, feat_dim]`
|
|
Returns:
|
|
out (FloatTensor): `[B, out_ch, T, feat_dim]`
|
|
"""
|
|
residual = xs
|
|
if self.conv_residual is not None:
|
|
residual = self.dropout_residual(self.conv_residual(residual))
|
|
xs = self.pad_left(xs) # `[B, embed_dim, T+kernel-1, 1]`
|
|
xs = self.layers(xs) # `[B, out_ch * 2, T ,1]`
|
|
xs = xs + residual
|
|
return xs
|
|
|
|
|
|
def get_activation(act):
|
|
"""Return activation function."""
|
|
# Lazy load to avoid unused import
|
|
activation_funcs = {
|
|
"hardshrink": paddle.nn.Hardshrink,
|
|
"hardswish": paddle.nn.Hardswish,
|
|
"hardtanh": paddle.nn.Hardtanh,
|
|
"tanh": paddle.nn.Tanh,
|
|
"relu": paddle.nn.ReLU,
|
|
"relu6": paddle.nn.ReLU6,
|
|
"leakyrelu": paddle.nn.LeakyReLU,
|
|
"selu": paddle.nn.SELU,
|
|
"swish": paddle.nn.Swish,
|
|
"gelu": paddle.nn.GELU,
|
|
"glu": GLU,
|
|
"elu": paddle.nn.ELU,
|
|
}
|
|
|
|
return activation_funcs[act]()
|