You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddleaudio/datasets/gtzan.py

116 lines
4.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
from typing import List
from typing import Tuple
from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from .dataset import AudioClassificationDataset
__all__ = ['GTZAN']
class GTZAN(AudioClassificationDataset):
"""
The GTZAN dataset consists of 1000 audio tracks each 30 seconds long. It contains 10 genres,
each represented by 100 tracks. The dataset is the most-used public dataset for evaluation
in machine listening research for music genre recognition (MGR).
Reference:
Musical genre classification of audio signals
https://ieeexplore.ieee.org/document/1021072/
"""
archieves = [
{
'url': 'http://opihi.cs.uvic.ca/sound/genres.tar.gz',
'md5': '5b3d6dddb579ab49814ab86dba69e7c7',
},
]
label_list = [
'blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal',
'pop', 'reggae', 'rock'
]
meta = os.path.join('genres', 'input.mf')
meta_info = collections.namedtuple('META_INFO', ('file_path', 'label'))
audio_path = 'genres'
def __init__(self,
mode='train',
seed=0,
n_folds=5,
split=1,
feat_type='raw',
**kwargs):
"""
Ags:
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train or dev).
seed (:obj:`int`, `optional`, defaults to 0):
Set the random seed to shuffle samples.
n_folds (:obj:`int`, `optional`, defaults to 5):
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
split (:obj:`int`, `optional`, defaults to 1):
It specify the fold of dev dataset.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
files, labels = self._get_data(mode, seed, n_folds, split)
super(GTZAN, self).__init__(
files=files, labels=labels, feat_type=feat_type, **kwargs)
def _get_meta_info(self) -> List[collections.namedtuple]:
ret = []
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
for line in rf.readlines():
ret.append(self.meta_info(*line.strip().split('\t')))
return ret
def _get_data(self, mode, seed, n_folds,
split) -> Tuple[List[str], List[int]]:
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
download_and_decompress(self.archieves, DATA_HOME)
meta_info = self._get_meta_info()
random.seed(seed) # shuffle samples to split data
random.shuffle(
meta_info
) # make sure using the same seed to create train and dev dataset
files = []
labels = []
n_samples_per_fold = len(meta_info) // n_folds
for idx, sample in enumerate(meta_info):
file_path, label = sample
filename = os.path.basename(file_path)
target = self.label_list.index(label)
fold = idx // n_samples_per_fold + 1
if mode == 'train' and int(fold) != split:
files.append(
os.path.join(DATA_HOME, self.audio_path, label, filename))
labels.append(target)
if mode != 'train' and int(fold) == split:
files.append(
os.path.join(DATA_HOME, self.audio_path, label, filename))
labels.append(target)
return files, labels