You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/mix_frontend.py

182 lines
5.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Dict
from typing import List
import paddle
from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.zh_frontend import Frontend
class MixFrontend():
def __init__(self,
g2p_model="pypinyin",
phone_vocab_path=None,
tone_vocab_path=None):
self.zh_frontend = Frontend(
phone_vocab_path=phone_vocab_path, tone_vocab_path=tone_vocab_path)
self.en_frontend = English(phone_vocab_path=phone_vocab_path)
self.SENTENCE_SPLITOR = re.compile(r'([:、,;。?!,;?!][”’]?)')
self.sp_id = self.zh_frontend.vocab_phones["sp"]
self.sp_id_tensor = paddle.to_tensor([self.sp_id])
def is_chinese(self, char):
if char >= '\u4e00' and char <= '\u9fa5':
return True
else:
return False
def is_alphabet(self, char):
if (char >= '\u0041' and char <= '\u005a') or (char >= '\u0061' and
char <= '\u007a'):
return True
else:
return False
def is_number(self, char):
if char >= '\u0030' and char <= '\u0039':
return True
else:
return False
def is_other(self, char):
if not (self.is_chinese(char) or self.is_number(char) or
self.is_alphabet(char)):
return True
else:
return False
def _split(self, text: str) -> List[str]:
text = re.sub(r'[《》【】<=>{}()#&@“”^_|…\\]', '', text)
text = self.SENTENCE_SPLITOR.sub(r'\1\n', text)
text = text.strip()
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
return sentences
def _distinguish(self, text: str) -> List[str]:
# sentence --> [ch_part, en_part, ch_part, ...]
segments = []
types = []
flag = 0
temp_seg = ""
temp_lang = ""
# Determine the type of each character. type: blank, chinese, alphabet, number, unk.
for ch in text:
if self.is_chinese(ch):
types.append("zh")
elif self.is_alphabet(ch):
types.append("en")
elif ch == " ":
types.append("blank")
elif self.is_number(ch):
types.append("num")
else:
types.append("unk")
assert len(types) == len(text)
for i in range(len(types)):
# find the first char of the seg
if flag == 0:
if types[i] != "unk" and types[i] != "blank":
temp_seg += text[i]
temp_lang = types[i]
flag = 1
else:
if types[i] == temp_lang or types[i] == "num":
temp_seg += text[i]
elif temp_lang == "num" and types[i] != "unk":
temp_seg += text[i]
if types[i] == "zh" or types[i] == "en":
temp_lang = types[i]
elif temp_lang == "en" and types[i] == "blank":
temp_seg += text[i]
elif types[i] == "unk":
pass
else:
segments.append((temp_seg, temp_lang))
if types[i] != "unk" and types[i] != "blank":
temp_seg = text[i]
temp_lang = types[i]
flag = 1
else:
flag = 0
temp_seg = ""
temp_lang = ""
segments.append((temp_seg, temp_lang))
return segments
def get_input_ids(self,
sentence: str,
merge_sentences: bool=True,
get_tone_ids: bool=False,
add_sp: bool=True,
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
sentences = self._split(sentence)
phones_list = []
result = {}
for text in sentences:
phones_seg = []
segments = self._distinguish(text)
for seg in segments:
content = seg[0]
lang = seg[1]
if lang == "zh":
input_ids = self.zh_frontend.get_input_ids(
content,
merge_sentences=True,
get_tone_ids=get_tone_ids,
to_tensor=to_tensor)
elif lang == "en":
input_ids = self.en_frontend.get_input_ids(
content, merge_sentences=True, to_tensor=to_tensor)
phones_seg.append(input_ids["phone_ids"][0])
if add_sp:
phones_seg.append(self.sp_id_tensor)
phones = paddle.concat(phones_seg)
phones_list.append(phones)
if merge_sentences:
merge_list = paddle.concat(phones_list)
# rm the last 'sp' to avoid the noise at the end
# cause in the training data, no 'sp' in the end
if merge_list[-1] == self.sp_id_tensor:
merge_list = merge_list[:-1]
phones_list = []
phones_list.append(merge_list)
result["phone_ids"] = phones_list
return result