You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
5.2 KiB
140 lines
5.2 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Positonal Encoding Module."""
|
|
import math
|
|
from typing import Tuple
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from deepspeech.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = [
|
|
"NoPositionalEncoding", "PositionalEncoding", "RelPositionalEncoding"
|
|
]
|
|
|
|
|
|
class NoPositionalEncoding(nn.Layer):
|
|
def __init__(self,
|
|
d_model: int,
|
|
dropout_rate: float,
|
|
max_len: int=5000,
|
|
reverse: bool=False):
|
|
super().__init__()
|
|
|
|
def forward(self, x: paddle.Tensor,
|
|
offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
return x, None
|
|
|
|
def position_encoding(self, offset: int, size: int) -> paddle.Tensor:
|
|
return None
|
|
|
|
|
|
class PositionalEncoding(nn.Layer):
|
|
def __init__(self,
|
|
d_model: int,
|
|
dropout_rate: float,
|
|
max_len: int=5000,
|
|
reverse: bool=False):
|
|
"""Positional encoding.
|
|
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
|
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
|
Args:
|
|
d_model (int): embedding dim.
|
|
dropout_rate (float): dropout rate.
|
|
max_len (int, optional): maximum input length. Defaults to 5000.
|
|
reverse (bool, optional): Not used. Defaults to False.
|
|
"""
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.max_len = max_len
|
|
self.xscale = paddle.to_tensor(math.sqrt(self.d_model))
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|
|
self.pe = paddle.zeros([self.max_len, self.d_model]) #[T,D]
|
|
|
|
position = paddle.arange(
|
|
0, self.max_len, dtype=paddle.float32).unsqueeze(1) #[T, 1]
|
|
div_term = paddle.exp(
|
|
paddle.arange(0, self.d_model, 2, dtype=paddle.float32) *
|
|
-(math.log(10000.0) / self.d_model))
|
|
|
|
self.pe[:, 0::2] = paddle.sin(position * div_term)
|
|
self.pe[:, 1::2] = paddle.cos(position * div_term)
|
|
self.pe = self.pe.unsqueeze(0) #[1, T, D]
|
|
|
|
def forward(self, x: paddle.Tensor,
|
|
offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Add positional encoding.
|
|
Args:
|
|
x (paddle.Tensor): Input. Its shape is (batch, time, ...)
|
|
offset (int): position offset
|
|
Returns:
|
|
paddle.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
|
paddle.Tensor: for compatibility to RelPositionalEncoding, (batch=1, time, ...)
|
|
"""
|
|
T = x.shape[1]
|
|
assert offset + x.shape[1] < self.max_len
|
|
#TODO(Hui Zhang): using T = x.size(1), __getitem__ not support Tensor
|
|
pos_emb = self.pe[:, offset:offset + T]
|
|
x = x * self.xscale + pos_emb
|
|
return self.dropout(x), self.dropout(pos_emb)
|
|
|
|
def position_encoding(self, offset: int, size: int) -> paddle.Tensor:
|
|
""" For getting encoding in a streaming fashion
|
|
Attention!!!!!
|
|
we apply dropout only once at the whole utterance level in a none
|
|
streaming way, but will call this function several times with
|
|
increasing input size in a streaming scenario, so the dropout will
|
|
be applied several times.
|
|
Args:
|
|
offset (int): start offset
|
|
size (int): requried size of position encoding
|
|
Returns:
|
|
paddle.Tensor: Corresponding encoding
|
|
"""
|
|
assert offset + size < self.max_len
|
|
return self.dropout(self.pe[:, offset:offset + size])
|
|
|
|
|
|
class RelPositionalEncoding(PositionalEncoding):
|
|
"""Relative positional encoding module.
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860
|
|
"""
|
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int=5000):
|
|
"""
|
|
Args:
|
|
d_model (int): Embedding dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
max_len (int, optional): [Maximum input length.]. Defaults to 5000.
|
|
"""
|
|
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
|
|
|
def forward(self, x: paddle.Tensor,
|
|
offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Compute positional encoding.
|
|
Args:
|
|
x (paddle.Tensor): Input tensor (batch, time, `*`).
|
|
Returns:
|
|
paddle.Tensor: Encoded tensor (batch, time, `*`).
|
|
paddle.Tensor: Positional embedding tensor (1, time, `*`).
|
|
"""
|
|
assert offset + x.shape[1] < self.max_len
|
|
x = x * self.xscale
|
|
#TODO(Hui Zhang): using x.size(1), __getitem__ not support Tensor
|
|
pos_emb = self.pe[:, offset:offset + x.shape[1]]
|
|
return self.dropout(x), self.dropout(pos_emb)
|