You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.8 KiB
189 lines
6.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""V2 backend for `asr_recog.py` using py:class:`decoders.beam_search.BeamSearch`."""
|
|
import jsonlines
|
|
import paddle
|
|
from yacs.config import CfgNode
|
|
|
|
from .beam_search import BatchBeamSearch
|
|
from .beam_search import BeamSearch
|
|
from .scorers.length_bonus import LengthBonus
|
|
from .scorers.scorer_interface import BatchScorerInterface
|
|
from .utils import add_results_to_json
|
|
from deepspeech.exps import dynamic_import_tester
|
|
from deepspeech.io.reader import LoadInputsAndTargets
|
|
from deepspeech.models.asr_interface import ASRInterface
|
|
from deepspeech.utils.log import Log
|
|
# from espnet.asr.asr_utils import get_model_conf
|
|
# from espnet.asr.asr_utils import torch_load
|
|
# from espnet.nets.lm_interface import dynamic_import_lm
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
# NOTE: you need this func to generate our sphinx doc
|
|
|
|
|
|
def load_trained_model(args):
|
|
args.nprocs = args.ngpu
|
|
confs = CfgNode()
|
|
confs.set_new_allowed(True)
|
|
confs.merge_from_file(args.model_conf)
|
|
class_obj = dynamic_import_tester(args.model_name)
|
|
exp = class_obj(confs, args)
|
|
with exp.eval():
|
|
exp.setup()
|
|
exp.restore()
|
|
char_list = exp.args.char_list
|
|
model = exp.model
|
|
return model, char_list, exp, confs
|
|
|
|
|
|
def recog_v2(args):
|
|
"""Decode with custom models that implements ScorerInterface.
|
|
|
|
Args:
|
|
args (namespace): The program arguments.
|
|
See py:func:`bin.asr_recog.get_parser` for details
|
|
|
|
"""
|
|
logger.warning("experimental API for custom LMs is selected by --api v2")
|
|
if args.batchsize > 1:
|
|
raise NotImplementedError("multi-utt batch decoding is not implemented")
|
|
if args.streaming_mode is not None:
|
|
raise NotImplementedError("streaming mode is not implemented")
|
|
if args.word_rnnlm:
|
|
raise NotImplementedError("word LM is not implemented")
|
|
|
|
# set_deterministic(args)
|
|
model, char_list, exp, confs = load_trained_model(args)
|
|
assert isinstance(model, ASRInterface)
|
|
|
|
load_inputs_and_targets = LoadInputsAndTargets(
|
|
mode="asr",
|
|
load_output=False,
|
|
sort_in_input_length=False,
|
|
preprocess_conf=confs.collator.augmentation_config
|
|
if args.preprocess_conf is None else args.preprocess_conf,
|
|
preprocess_args={"train": False}, )
|
|
|
|
if args.rnnlm:
|
|
lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
|
|
# NOTE: for a compatibility with less than 0.5.0 version models
|
|
lm_model_module = getattr(lm_args, "model_module", "default")
|
|
lm_class = dynamic_import_lm(lm_model_module, lm_args.backend)
|
|
lm = lm_class(len(char_list), lm_args)
|
|
torch_load(args.rnnlm, lm)
|
|
lm.eval()
|
|
else:
|
|
lm = None
|
|
|
|
if args.ngram_model:
|
|
from .scorers.ngram import NgramFullScorer
|
|
from .scorers.ngram import NgramPartScorer
|
|
|
|
if args.ngram_scorer == "full":
|
|
ngram = NgramFullScorer(args.ngram_model, char_list)
|
|
else:
|
|
ngram = NgramPartScorer(args.ngram_model, char_list)
|
|
else:
|
|
ngram = None
|
|
|
|
scorers = model.scorers() # decoder
|
|
scorers["lm"] = lm
|
|
scorers["ngram"] = ngram
|
|
scorers["length_bonus"] = LengthBonus(len(char_list))
|
|
weights = dict(
|
|
decoder=1.0 - args.ctc_weight,
|
|
ctc=args.ctc_weight,
|
|
lm=args.lm_weight,
|
|
ngram=args.ngram_weight,
|
|
length_bonus=args.penalty, )
|
|
beam_search = BeamSearch(
|
|
beam_size=args.beam_size,
|
|
vocab_size=len(char_list),
|
|
weights=weights,
|
|
scorers=scorers,
|
|
sos=model.sos,
|
|
eos=model.eos,
|
|
token_list=char_list,
|
|
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full", )
|
|
|
|
# TODO(karita): make all scorers batchfied
|
|
if args.batchsize == 1:
|
|
non_batch = [
|
|
k for k, v in beam_search.full_scorers.items()
|
|
if not isinstance(v, BatchScorerInterface)
|
|
]
|
|
if len(non_batch) == 0:
|
|
beam_search.__class__ = BatchBeamSearch
|
|
logger.info("BatchBeamSearch implementation is selected.")
|
|
else:
|
|
logger.warning(f"As non-batch scorers {non_batch} are found, "
|
|
f"fall back to non-batch implementation.")
|
|
|
|
if args.ngpu > 1:
|
|
raise NotImplementedError("only single GPU decoding is supported")
|
|
if args.ngpu == 1:
|
|
device = "gpu:0"
|
|
else:
|
|
device = "cpu"
|
|
paddle.set_device(device)
|
|
dtype = getattr(paddle, args.dtype)
|
|
logger.info(f"Decoding device={device}, dtype={dtype}")
|
|
model.to(device=device, dtype=dtype)
|
|
model.eval()
|
|
beam_search.to(device=device, dtype=dtype)
|
|
beam_search.eval()
|
|
|
|
# read json data
|
|
js = []
|
|
with jsonlines.open(args.recog_json, "r") as reader:
|
|
for item in reader:
|
|
js.append(item)
|
|
# jsonlines to dict, key by 'utt', value by jsonline
|
|
js = {item['utt']: item for item in js}
|
|
|
|
new_js = {}
|
|
with paddle.no_grad():
|
|
with jsonlines.open(args.result_label, "w") as f:
|
|
for idx, name in enumerate(js.keys(), 1):
|
|
logger.info(f"({idx}/{len(js.keys())}) decoding " + name)
|
|
batch = [(name, js[name])]
|
|
feat = load_inputs_and_targets(batch)[0][0]
|
|
logger.info(f'feat: {feat.shape}')
|
|
enc = model.encode(paddle.to_tensor(feat).to(dtype))
|
|
logger.info(f'eout: {enc.shape}')
|
|
nbest_hyps = beam_search(
|
|
x=enc,
|
|
maxlenratio=args.maxlenratio,
|
|
minlenratio=args.minlenratio)
|
|
nbest_hyps = [
|
|
h.asdict()
|
|
for h in nbest_hyps[:min(len(nbest_hyps), args.nbest)]
|
|
]
|
|
new_js[name] = add_results_to_json(js[name], nbest_hyps,
|
|
char_list)
|
|
|
|
item = new_js[name]['output'][0] # 1-best
|
|
ref = item['text']
|
|
rec_text = item['rec_text'].replace('▁', ' ').replace(
|
|
'<eos>', '').strip()
|
|
rec_tokenid = list(map(int, item['rec_tokenid'].split()))
|
|
f.write({
|
|
"utt": name,
|
|
"refs": [ref],
|
|
"hyps": [rec_text],
|
|
"hyps_tokenid": [rec_tokenid],
|
|
})
|