You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/text_to_speech
TianYuan 5ae5e6819c
update readme, test=tts
2 years ago
..
README.md update readme, test=tts 2 years ago
README_cn.md update readme, test=tts 2 years ago
run.sh

README.md

(简体中文|English)

TTS (Text To Speech)

Introduction

Text-to-speech (TTS) is a natural language modeling process that requires changing units of text into units of speech for audio presentation.

This demo is an implementation to generate audio from the given text. It can be done by a single command or a few lines in python using PaddleSpeech.

Usage

1. Installation

see installation.

You can choose one way from easy, meduim and hard to install paddlespeech.

2. Prepare Input

The input of this demo should be a text of the specific language that can be passed via argument.

3. Usage

  • Command Line (Recommended) The default acoustic model is Fastspeech2, and the default vocoder is HiFiGAN, the default inference method is dygraph inference.

    • Chinese

      paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!"
      
    • Batch Process

      echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
      
    • Chinese, use SpeedySpeech as the acoustic model

      paddlespeech tts --am speedyspeech_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!"
      
    • Chinese, multi-speaker

      You can change spk_id here.

      paddlespeech tts --am fastspeech2_aishell3 --voc pwgan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0
      
    • English

      paddlespeech tts --am fastspeech2_ljspeech --voc pwgan_ljspeech --lang en --input "hello world"
      
    • English, multi-speaker

      You can change spk_id here.

      paddlespeech tts --am fastspeech2_vctk --voc pwgan_vctk --input "hello, boys" --lang en --spk_id 0
      
    • Chinese English Mixed, multi-speaker You can change spk_id here.

      # The `am` must be `fastspeech2_mix`!
      # The `lang` must be `mix`!
      # The voc must be chinese datasets' voc now!
      # spk 174 is csmcc, spk 175 is ljspeech
      paddlespeech tts --am fastspeech2_mix --voc hifigan_csmsc --lang mix --input "热烈欢迎您在 Discussions 中提交问题,并在 Issues 中指出发现的 bug。此外我们非常希望您参与到 Paddle Speech 的开发中!" --spk_id 174 --output mix_spk174.wav
      paddlespeech tts --am fastspeech2_mix --voc hifigan_aishell3 --lang mix --input "热烈欢迎您在 Discussions 中提交问题,并在 Issues 中指出发现的 bug。此外我们非常希望您参与到 Paddle Speech 的开发中!" --spk_id 174 --output mix_spk174_aishell3.wav
      paddlespeech tts --am fastspeech2_mix --voc pwgan_csmsc --lang mix --input "我们的声学模型使用了 Fast Speech Two, 声码器使用了 Parallel Wave GAN and Hifi GAN." --spk_id 175 --output mix_spk175_pwgan.wav
      paddlespeech tts --am fastspeech2_mix --voc hifigan_csmsc --lang mix --input "我们的声学模型使用了 Fast Speech Two, 声码器使用了 Parallel Wave GAN and Hifi GAN." --spk_id 175 --output mix_spk175.wav
      
    • Use ONNXRuntime infer

      paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!" --output default.wav --use_onnx True
      paddlespeech tts --am speedyspeech_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output ss.wav --use_onnx True
      paddlespeech tts --voc mb_melgan_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output mb.wav --use_onnx True
      paddlespeech tts --voc pwgan_csmsc --input "你好,欢迎使用百度飞桨深度学习框架!" --output pwgan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_aishell3 --voc pwgan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0 --output aishell3_fs2_pwgan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_aishell3 --voc hifigan_aishell3 --input "你好,欢迎使用百度飞桨深度学习框架!" --spk_id 0 --output aishell3_fs2_hifigan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_ljspeech --voc pwgan_ljspeech --lang en --input "Life was like a box of chocolates, you never know what you're gonna get." --output lj_fs2_pwgan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_ljspeech --voc hifigan_ljspeech --lang en --input "Life was like a box of chocolates, you never know what you're gonna get." --output lj_fs2_hifigan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_vctk --voc pwgan_vctk --input "Life was like a box of chocolates, you never know what you're gonna get." --lang en --spk_id 0 --output vctk_fs2_pwgan.wav --use_onnx True
      paddlespeech tts --am fastspeech2_vctk --voc hifigan_vctk --input "Life was like a box of chocolates, you never know what you're gonna get." --lang en --spk_id 0 --output vctk_fs2_hifigan.wav --use_onnx True
      

    Usage:

    paddlespeech tts --help
    

    Arguments:

    • input(required): Input text to generate..
    • am: Acoustic model type of tts task. Default: fastspeech2_csmsc.
    • am_config: Config of acoustic model. Use deault config when it is None. Default: None.
    • am_ckpt: Acoustic model checkpoint. Use pretrained model when it is None. Default: None.
    • am_stat: Mean and standard deviation used to normalize spectrogram when training acoustic model. Default: None.
    • phones_dict: Phone vocabulary file. Default: None.
    • tones_dict: Tone vocabulary file. Default: None.
    • speaker_dict: speaker id map file. Default: None.
    • spk_id: Speaker id for multi speaker acoustic model. Default: 0.
    • voc: Vocoder type of tts task. Default: pwgan_csmsc.
    • voc_config: Config of vocoder. Use deault config when it is None. Default: None.
    • voc_ckpt: Vocoder checkpoint. Use pretrained model when it is None. Default: None.
    • voc_stat: Mean and standard deviation used to normalize spectrogram when training vocoder. Default: None.
    • lang: Language of tts task. Default: zh.
    • device: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
    • output: Output wave filepath. Default: output.wav.
    • use_onnx: whether to usen ONNXRuntime inference.
    • fs: sample rate for ONNX models when use specified model files.

    Output:

    [2021-12-09 20:49:58,955] [    INFO] [log.py] [L57] - Wave file has been generated: output.wav
    
  • Python API

    • Dygraph infer:
      import paddle
      from paddlespeech.cli.tts import TTSExecutor
      tts_executor = TTSExecutor()
      wav_file = tts_executor(
          text='今天的天气不错啊',
          output='output.wav',
          am='fastspeech2_csmsc',
          am_config=None,
          am_ckpt=None,
          am_stat=None,
          spk_id=0,
          phones_dict=None,
          tones_dict=None,
          speaker_dict=None,
          voc='pwgan_csmsc',
          voc_config=None,
          voc_ckpt=None,
          voc_stat=None,
          lang='zh',
          device=paddle.get_device())
      print('Wave file has been generated: {}'.format(wav_file))
      
    • ONNXRuntime infer:
      from paddlespeech.cli.tts import TTSExecutor
      tts_executor = TTSExecutor()
      wav_file = tts_executor(
          text='对数据集进行预处理',
          output='output.wav',
          am='fastspeech2_csmsc',
          voc='hifigan_csmsc',
          lang='zh',
          use_onnx=True,
          cpu_threads=2)
      

    Output:

    Wave file has been generated: output.wav
    

4. Pretrained Models

Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:

  • Acoustic model

    Model Language
    speedyspeech_csmsc zh
    fastspeech2_csmsc zh
    fastspeech2_ljspeech en
    fastspeech2_aishell3 zh
    fastspeech2_vctk en
    fastspeech2_cnndecoder_csmsc zh
    fastspeech2_mix mix
    tacotron2_csmsc zh
    tacotron2_ljspeech en
  • Vocoder

    Model Language
    pwgan_csmsc zh
    pwgan_ljspeech en
    pwgan_aishell3 zh
    pwgan_vctk en
    mb_melgan_csmsc zh
    style_melgan_csmsc zh
    hifigan_csmsc zh
    hifigan_ljspeech en
    hifigan_aishell3 zh
    hifigan_vctk en
    wavernn_csmsc zh