You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.3 KiB
120 lines
4.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
import time
|
|
|
|
import paddle
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.audio.backends import load as load_audio
|
|
from paddlespeech.audio.compliance.librosa import melspectrogram
|
|
from paddlespeech.s2t.utils.log import Log
|
|
from paddlespeech.vector.io.batch import feature_normalize
|
|
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
|
|
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
|
|
from paddlespeech.vector.training.seeding import seed_everything
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
def extract_audio_embedding(args, config):
|
|
# stage 0: set the training device, cpu or gpu
|
|
paddle.set_device(args.device)
|
|
# set the random seed, it is a must for multiprocess training
|
|
seed_everything(config.seed)
|
|
|
|
# stage 1: build the dnn backbone model network
|
|
ecapa_tdnn = EcapaTdnn(**config.model)
|
|
|
|
# stage4: build the speaker verification train instance with backbone model
|
|
model = SpeakerIdetification(
|
|
backbone=ecapa_tdnn, num_class=config.num_speakers)
|
|
# stage 2: load the pre-trained model
|
|
args.load_checkpoint = os.path.abspath(
|
|
os.path.expanduser(args.load_checkpoint))
|
|
|
|
# load model checkpoint to sid model
|
|
state_dict = paddle.load(
|
|
os.path.join(args.load_checkpoint, 'model.pdparams'))
|
|
model.set_state_dict(state_dict)
|
|
logger.info(f'Checkpoint loaded from {args.load_checkpoint}')
|
|
|
|
# stage 3: we must set the model to eval mode
|
|
model.eval()
|
|
|
|
# stage 4: read the audio data and extract the embedding
|
|
# wavform is one dimension numpy array
|
|
waveform, sr = load_audio(args.audio_path)
|
|
|
|
# feat type is numpy array, whose shape is [dim, time]
|
|
# we need convert the audio feat to one-batch shape [batch, dim, time], where the batch is one
|
|
# so the final shape is [1, dim, time]
|
|
start_time = time.time()
|
|
feat = melspectrogram(
|
|
x=waveform,
|
|
sr=config.sr,
|
|
n_mels=config.n_mels,
|
|
window_size=config.window_size,
|
|
hop_length=config.hop_size)
|
|
feat = paddle.to_tensor(feat).unsqueeze(0)
|
|
|
|
# in inference period, the lengths is all one without padding
|
|
lengths = paddle.ones([1])
|
|
feat = feature_normalize(feat, mean_norm=True, std_norm=False)
|
|
|
|
# model backbone network forward the feats and get the embedding
|
|
embedding = model.backbone(
|
|
feat, lengths).squeeze().numpy() # (1, emb_size, 1) -> (emb_size)
|
|
elapsed_time = time.time() - start_time
|
|
audio_length = waveform.shape[0] / sr
|
|
|
|
# stage 5: do global norm with external mean and std
|
|
rtf = elapsed_time / audio_length
|
|
logger.info(f"{args.device} rft={rtf}")
|
|
|
|
return embedding
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# yapf: disable
|
|
parser = argparse.ArgumentParser(__doc__)
|
|
parser.add_argument('--device',
|
|
choices=['cpu', 'gpu'],
|
|
default="cpu",
|
|
help="Select which device to train model, defaults to gpu.")
|
|
parser.add_argument("--config",
|
|
default=None,
|
|
type=str,
|
|
help="configuration file")
|
|
parser.add_argument("--load-checkpoint",
|
|
type=str,
|
|
default='',
|
|
help="Directory to load model checkpoint to contiune trainning.")
|
|
parser.add_argument("--audio-path",
|
|
default="./data/demo.wav",
|
|
type=str,
|
|
help="Single audio file path")
|
|
args = parser.parse_args()
|
|
# yapf: enable
|
|
# https://yaml.org/type/float.html
|
|
config = CfgNode(new_allowed=True)
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
|
|
config.freeze()
|
|
print(config)
|
|
|
|
extract_audio_embedding(args, config)
|