|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import numpy as np
|
|
|
import paddle
|
|
|
|
|
|
from paddlespeech.t2s.audio.codec import encode_mu_law
|
|
|
from paddlespeech.t2s.audio.codec import float_2_label
|
|
|
from paddlespeech.t2s.audio.codec import label_2_float
|
|
|
|
|
|
|
|
|
class Clip(object):
|
|
|
"""Collate functor for training vocoders.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
batch_max_steps=20480,
|
|
|
hop_size=256,
|
|
|
aux_context_window=0, ):
|
|
|
"""Initialize customized collater for DataLoader.
|
|
|
Args:
|
|
|
|
|
|
batch_max_steps (int): The maximum length of input signal in batch.
|
|
|
hop_size (int): Hop size of auxiliary features.
|
|
|
aux_context_window (int): Context window size for auxiliary feature conv.
|
|
|
|
|
|
"""
|
|
|
if batch_max_steps % hop_size != 0:
|
|
|
batch_max_steps += -(batch_max_steps % hop_size)
|
|
|
assert batch_max_steps % hop_size == 0
|
|
|
self.batch_max_steps = batch_max_steps
|
|
|
self.batch_max_frames = batch_max_steps // hop_size
|
|
|
self.hop_size = hop_size
|
|
|
self.aux_context_window = aux_context_window
|
|
|
|
|
|
# set useful values in random cutting
|
|
|
self.start_offset = aux_context_window
|
|
|
self.end_offset = -(self.batch_max_frames + aux_context_window)
|
|
|
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
"""Convert into batch tensors.
|
|
|
|
|
|
Args:
|
|
|
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
|
|
|
|
|
|
Returns:
|
|
|
Tensor:
|
|
|
Target signal batch (B, 1, T).
|
|
|
Tensor:
|
|
|
Auxiliary feature batch (B, C, T'), where
|
|
|
T = (T' - 2 * aux_context_window) * hop_size.
|
|
|
"""
|
|
|
# check length
|
|
|
batch = [
|
|
|
self._adjust_length(b['wave'], b['feats']) for b in batch
|
|
|
if b['feats'].shape[0] > self.mel_threshold
|
|
|
]
|
|
|
xs, cs = [b[0] for b in batch], [b[1] for b in batch]
|
|
|
|
|
|
# make batch with random cut
|
|
|
c_lengths = [c.shape[0] for c in cs]
|
|
|
start_frames = np.array([
|
|
|
np.random.randint(self.start_offset, cl + self.end_offset)
|
|
|
for cl in c_lengths
|
|
|
])
|
|
|
x_starts = start_frames * self.hop_size
|
|
|
x_ends = x_starts + self.batch_max_steps
|
|
|
|
|
|
c_starts = start_frames - self.aux_context_window
|
|
|
c_ends = start_frames + self.batch_max_frames + self.aux_context_window
|
|
|
y_batch = np.stack(
|
|
|
[x[start:end] for x, start, end in zip(xs, x_starts, x_ends)])
|
|
|
c_batch = np.stack(
|
|
|
[c[start:end] for c, start, end in zip(cs, c_starts, c_ends)])
|
|
|
|
|
|
# convert each batch to tensor, assume that each item in batch has the same length
|
|
|
y_batch = paddle.to_tensor(
|
|
|
y_batch, dtype=paddle.float32).unsqueeze(1) # (B, 1, T)
|
|
|
c_batch = paddle.to_tensor(
|
|
|
c_batch, dtype=paddle.float32).transpose([0, 2, 1]) # (B, C, T')
|
|
|
|
|
|
return y_batch, c_batch
|
|
|
|
|
|
def _adjust_length(self, x, c):
|
|
|
"""Adjust the audio and feature lengths.
|
|
|
|
|
|
Note:
|
|
|
Basically we assume that the length of x and c are adjusted
|
|
|
through preprocessing stage, but if we use other library processed
|
|
|
features, this process will be needed.
|
|
|
|
|
|
"""
|
|
|
if len(x) < c.shape[0] * self.hop_size:
|
|
|
x = np.pad(x, (0, c.shape[0] * self.hop_size - len(x)), mode="edge")
|
|
|
elif len(x) > c.shape[0] * self.hop_size:
|
|
|
x = x[:c.shape[0] * self.hop_size]
|
|
|
# check the legnth is valid
|
|
|
assert len(x) == c.shape[
|
|
|
0] * self.hop_size, f"wave length: ({len(x)}), mel length: ({c.shape[0]})"
|
|
|
|
|
|
return x, c
|
|
|
|
|
|
|
|
|
class WaveRNNClip(Clip):
|
|
|
def __init__(self,
|
|
|
mode: str='RAW',
|
|
|
batch_max_steps: int=4500,
|
|
|
hop_size: int=300,
|
|
|
aux_context_window: int=2,
|
|
|
bits: int=9,
|
|
|
mu_law: bool=True):
|
|
|
self.mode = mode
|
|
|
self.mel_win = batch_max_steps // hop_size + 2 * aux_context_window
|
|
|
self.batch_max_steps = batch_max_steps
|
|
|
self.hop_size = hop_size
|
|
|
self.aux_context_window = aux_context_window
|
|
|
self.mu_law = mu_law
|
|
|
self.batch_max_frames = batch_max_steps // hop_size
|
|
|
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
|
|
|
if self.mode == 'MOL':
|
|
|
self.bits = 16
|
|
|
else:
|
|
|
self.bits = bits
|
|
|
|
|
|
def to_quant(self, wav):
|
|
|
if self.mode == 'RAW':
|
|
|
if self.mu_law:
|
|
|
quant = encode_mu_law(wav, mu=2**self.bits)
|
|
|
else:
|
|
|
quant = float_2_label(wav, bits=self.bits)
|
|
|
elif self.mode == 'MOL':
|
|
|
quant = float_2_label(wav, bits=16)
|
|
|
quant = quant.astype(np.int64)
|
|
|
return quant
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
# voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length
|
|
|
# max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15
|
|
|
"""Convert into batch tensors.
|
|
|
Args:
|
|
|
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
|
|
|
|
|
|
Returns:
|
|
|
Tensor: Input signal batch (B, 1, T).
|
|
|
Tensor: Target signal batch (B, 1, T).
|
|
|
Tensor: Auxiliary feature batch (B, C, T'),
|
|
|
where T = (T' - 2 * aux_context_window) * hop_size.
|
|
|
|
|
|
"""
|
|
|
# check length
|
|
|
batch = [
|
|
|
self._adjust_length(b['wave'], b['feats']) for b in batch
|
|
|
if b['feats'].shape[0] > self.mel_threshold
|
|
|
]
|
|
|
wav, mel = [b[0] for b in batch], [b[1] for b in batch]
|
|
|
# mel 此处需要转置
|
|
|
mel = [x.T for x in mel]
|
|
|
max_offsets = [
|
|
|
x.shape[-1] - 2 - (self.mel_win + 2 * self.aux_context_window)
|
|
|
for x in mel
|
|
|
]
|
|
|
# the slice point of mel selecting randomly
|
|
|
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
|
|
|
# the slice point of wav selecting randomly, which is behind 2(=pad) frames
|
|
|
sig_offsets = [(offset + self.aux_context_window) * self.hop_size
|
|
|
for offset in mel_offsets]
|
|
|
# mels.shape[1] = voc_seq_len // hop_length + 2 * voc_pad
|
|
|
mels = [
|
|
|
x[:, mel_offsets[i]:mel_offsets[i] + self.mel_win]
|
|
|
for i, x in enumerate(mel)
|
|
|
]
|
|
|
# label.shape[1] = voc_seq_len + 1
|
|
|
wav = [self.to_quant(x) for x in wav]
|
|
|
|
|
|
labels = [
|
|
|
x[sig_offsets[i]:sig_offsets[i] + self.batch_max_steps + 1]
|
|
|
for i, x in enumerate(wav)
|
|
|
]
|
|
|
|
|
|
mels = np.stack(mels).astype(np.float32)
|
|
|
labels = np.stack(labels).astype(np.int64)
|
|
|
|
|
|
mels = paddle.to_tensor(mels)
|
|
|
labels = paddle.to_tensor(labels, dtype='int64')
|
|
|
# x is input, y is label
|
|
|
x = labels[:, :self.batch_max_steps]
|
|
|
y = labels[:, 1:]
|
|
|
'''
|
|
|
mode = RAW:
|
|
|
mu_law = True:
|
|
|
quant: bits = 9 0, 1, 2, ..., 509, 510, 511 int
|
|
|
mu_law = False
|
|
|
quant bits = 9 [0, 511] float
|
|
|
mode = MOL:
|
|
|
quant: bits = 16 [0. 65536] float
|
|
|
'''
|
|
|
# x should be normalizes in.[0, 1] in RAW mode
|
|
|
x = label_2_float(paddle.cast(x, dtype='float32'), self.bits)
|
|
|
# y should be normalizes in.[0, 1] in MOL mode
|
|
|
if self.mode == 'MOL':
|
|
|
y = label_2_float(paddle.cast(y, dtype='float32'), self.bits)
|
|
|
|
|
|
return x, y, mels
|
|
|
|
|
|
|
|
|
# for paddleslim
|
|
|
|
|
|
|
|
|
class Clip_static(Clip):
|
|
|
"""Collate functor for training vocoders.
|
|
|
"""
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
"""Convert into batch tensors.
|
|
|
|
|
|
Args:
|
|
|
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
|
|
|
|
|
|
Returns:
|
|
|
Dict[str, np.array]:
|
|
|
Auxiliary feature batch (B, C, T'), where
|
|
|
T = (T' - 2 * aux_context_window) * hop_size.
|
|
|
"""
|
|
|
# check length
|
|
|
batch = [
|
|
|
self._adjust_length(b['wave'], b['feats']) for b in batch
|
|
|
if b['feats'].shape[0] > self.mel_threshold
|
|
|
]
|
|
|
xs, cs = [b[0] for b in batch], [b[1] for b in batch]
|
|
|
|
|
|
# make batch with random cut
|
|
|
c_lengths = [c.shape[0] for c in cs]
|
|
|
start_frames = np.array([
|
|
|
np.random.randint(self.start_offset, cl + self.end_offset)
|
|
|
for cl in c_lengths
|
|
|
])
|
|
|
|
|
|
c_starts = start_frames - self.aux_context_window
|
|
|
c_ends = start_frames + self.batch_max_frames + self.aux_context_window
|
|
|
c_batch = np.stack(
|
|
|
[c[start:end] for c, start, end in zip(cs, c_starts, c_ends)])
|
|
|
# infer axis (T',C) is different with train axis (B, C, T')
|
|
|
# c_batch = c_batch.transpose([0, 2, 1]) # (B, C, T')
|
|
|
# do not need batch axis in infer
|
|
|
c_batch = c_batch[0]
|
|
|
batch = {"logmel": c_batch}
|
|
|
return batch
|