You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
6.9 KiB
219 lines
6.9 KiB
"""Deployment for DeepSpeech2 model."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import gzip
|
|
import distutils.util
|
|
import multiprocessing
|
|
import paddle.v2 as paddle
|
|
from data_utils.data import DataGenerator
|
|
from model import deep_speech2
|
|
from deploy.swig_decoders_wrapper import *
|
|
from error_rate import wer
|
|
import utils
|
|
import time
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument(
|
|
"--num_samples",
|
|
default=32,
|
|
type=int,
|
|
help="Number of samples for inference. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--num_conv_layers",
|
|
default=2,
|
|
type=int,
|
|
help="Convolution layer number. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--num_rnn_layers",
|
|
default=3,
|
|
type=int,
|
|
help="RNN layer number. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--rnn_layer_size",
|
|
default=512,
|
|
type=int,
|
|
help="RNN layer cell number. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--use_gpu",
|
|
default=True,
|
|
type=distutils.util.strtobool,
|
|
help="Use gpu or not. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--num_threads_data",
|
|
default=multiprocessing.cpu_count(),
|
|
type=int,
|
|
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--num_processes_beam_search",
|
|
default=multiprocessing.cpu_count(),
|
|
type=int,
|
|
help="Number of cpu processes for beam search. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--mean_std_filepath",
|
|
default='mean_std.npz',
|
|
type=str,
|
|
help="Manifest path for normalizer. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--decode_manifest_path",
|
|
default='datasets/manifest.test',
|
|
type=str,
|
|
help="Manifest path for decoding. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--model_filepath",
|
|
default='checkpoints/params.latest.tar.gz',
|
|
type=str,
|
|
help="Model filepath. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--vocab_filepath",
|
|
default='datasets/vocab/eng_vocab.txt',
|
|
type=str,
|
|
help="Vocabulary filepath. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--decode_method",
|
|
default='beam_search',
|
|
type=str,
|
|
help="Method for ctc decoding: beam_search or beam_search_batch. "
|
|
"(default: %(default)s)")
|
|
parser.add_argument(
|
|
"--beam_size",
|
|
default=200,
|
|
type=int,
|
|
help="Width for beam search decoding. (default: %(default)d)")
|
|
parser.add_argument(
|
|
"--num_results_per_sample",
|
|
default=1,
|
|
type=int,
|
|
help="Number of output per sample in beam search. (default: %(default)d)")
|
|
parser.add_argument(
|
|
"--language_model_path",
|
|
default="lm/data/common_crawl_00.prune01111.trie.klm",
|
|
type=str,
|
|
help="Path for language model. (default: %(default)s)")
|
|
parser.add_argument(
|
|
"--alpha",
|
|
default=0.26,
|
|
type=float,
|
|
help="Parameter associated with language model. (default: %(default)f)")
|
|
parser.add_argument(
|
|
"--beta",
|
|
default=0.1,
|
|
type=float,
|
|
help="Parameter associated with word count. (default: %(default)f)")
|
|
parser.add_argument(
|
|
"--cutoff_prob",
|
|
default=0.99,
|
|
type=float,
|
|
help="The cutoff probability of pruning"
|
|
"in beam search. (default: %(default)f)")
|
|
args = parser.parse_args()
|
|
|
|
|
|
def infer():
|
|
"""Deployment for DeepSpeech2."""
|
|
# initialize data generator
|
|
data_generator = DataGenerator(
|
|
vocab_filepath=args.vocab_filepath,
|
|
mean_std_filepath=args.mean_std_filepath,
|
|
augmentation_config='{}',
|
|
num_threads=args.num_threads_data)
|
|
|
|
# create network config
|
|
# paddle.data_type.dense_array is used for variable batch input.
|
|
# The size 161 * 161 is only an placeholder value and the real shape
|
|
# of input batch data will be induced during training.
|
|
audio_data = paddle.layer.data(
|
|
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
|
|
text_data = paddle.layer.data(
|
|
name="transcript_text",
|
|
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
|
|
output_probs = deep_speech2(
|
|
audio_data=audio_data,
|
|
text_data=text_data,
|
|
dict_size=data_generator.vocab_size,
|
|
num_conv_layers=args.num_conv_layers,
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
rnn_size=args.rnn_layer_size,
|
|
is_inference=True)
|
|
|
|
# load parameters
|
|
parameters = paddle.parameters.Parameters.from_tar(
|
|
gzip.open(args.model_filepath))
|
|
|
|
# prepare infer data
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
manifest_path=args.decode_manifest_path,
|
|
batch_size=args.num_samples,
|
|
min_batch_size=1,
|
|
sortagrad=False,
|
|
shuffle_method=None)
|
|
infer_data = batch_reader().next()
|
|
|
|
# run inference
|
|
infer_results = paddle.infer(
|
|
output_layer=output_probs, parameters=parameters, input=infer_data)
|
|
num_steps = len(infer_results) // len(infer_data)
|
|
probs_split = [
|
|
infer_results[i * num_steps:(i + 1) * num_steps]
|
|
for i in xrange(len(infer_data))
|
|
]
|
|
|
|
# targe transcription
|
|
target_transcription = [
|
|
''.join(
|
|
[data_generator.vocab_list[index] for index in infer_data[i][1]])
|
|
for i, probs in enumerate(probs_split)
|
|
]
|
|
|
|
# external scorer
|
|
ext_scorer = Scorer(
|
|
alpha=args.alpha, beta=args.beta, model_path=args.language_model_path)
|
|
|
|
## decode and print
|
|
time_begin = time.time()
|
|
wer_sum, wer_counter = 0, 0
|
|
batch_beam_results = []
|
|
if args.decode_method == 'beam_search':
|
|
for i, probs in enumerate(probs_split):
|
|
beam_result = ctc_beam_search_decoder(
|
|
probs_seq=probs,
|
|
beam_size=args.beam_size,
|
|
vocabulary=data_generator.vocab_list,
|
|
blank_id=len(data_generator.vocab_list),
|
|
cutoff_prob=args.cutoff_prob,
|
|
ext_scoring_func=ext_scorer, )
|
|
batch_beam_results += [beam_result]
|
|
else:
|
|
batch_beam_results = ctc_beam_search_decoder_batch(
|
|
probs_split=probs_split,
|
|
beam_size=args.beam_size,
|
|
vocabulary=data_generator.vocab_list,
|
|
blank_id=len(data_generator.vocab_list),
|
|
num_processes=args.num_processes_beam_search,
|
|
cutoff_prob=args.cutoff_prob,
|
|
ext_scoring_func=ext_scorer, )
|
|
|
|
for i, beam_result in enumerate(batch_beam_results):
|
|
print("\nTarget Transcription:\t%s" % target_transcription[i])
|
|
print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
|
|
wer_cur = wer(target_transcription[i], beam_result[0][1])
|
|
wer_sum += wer_cur
|
|
wer_counter += 1
|
|
print("cur wer = %f , average wer = %f" %
|
|
(wer_cur, wer_sum / wer_counter))
|
|
|
|
time_end = time.time()
|
|
print("total time = %f" % (time_end - time_begin))
|
|
|
|
|
|
def main():
|
|
utils.print_arguments(args)
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
|
infer()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|