You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
6.7 KiB
218 lines
6.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import paddle
|
|
import soundfile as sf
|
|
from timer import timer
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_am_output
|
|
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
|
from paddlespeech.t2s.exps.syn_utils import get_predictor
|
|
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
|
from paddlespeech.t2s.exps.syn_utils import get_voc_output
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Paddle Infernce with acoustic model & vocoder.")
|
|
# acoustic model
|
|
parser.add_argument(
|
|
'--am',
|
|
type=str,
|
|
default='fastspeech2_csmsc',
|
|
choices=[
|
|
'speedyspeech_csmsc',
|
|
'fastspeech2_csmsc',
|
|
'fastspeech2_aishell3',
|
|
'fastspeech2_ljspeech',
|
|
'fastspeech2_vctk',
|
|
'tacotron2_csmsc',
|
|
'fastspeech2_mix',
|
|
'fastspeech2_male-zh',
|
|
'fastspeech2_male-en',
|
|
'fastspeech2_male-mix',
|
|
'fastspeech2_canton',
|
|
],
|
|
help='Choose acoustic model type of tts task.')
|
|
parser.add_argument(
|
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
|
parser.add_argument(
|
|
'--spk_id',
|
|
type=int,
|
|
default=0,
|
|
help='spk id for multi speaker acoustic model')
|
|
# voc
|
|
parser.add_argument(
|
|
'--voc',
|
|
type=str,
|
|
default='pwgan_csmsc',
|
|
choices=[
|
|
'pwgan_csmsc',
|
|
'pwgan_aishell3',
|
|
'pwgan_ljspeech',
|
|
'pwgan_vctk',
|
|
'mb_melgan_csmsc',
|
|
'hifigan_csmsc',
|
|
'hifigan_aishell3',
|
|
'hifigan_ljspeech',
|
|
'hifigan_vctk',
|
|
'wavernn_csmsc',
|
|
'pwgan_male',
|
|
'hifigan_male',
|
|
],
|
|
help='Choose vocoder type of tts task.')
|
|
# other
|
|
parser.add_argument(
|
|
'--lang',
|
|
type=str,
|
|
default='zh',
|
|
help='Choose model language. zh or en or mix')
|
|
parser.add_argument(
|
|
"--text",
|
|
type=str,
|
|
help="text to synthesize, a 'utt_id sentence' pair per line")
|
|
parser.add_argument(
|
|
"--inference_dir", type=str, help="dir to save inference models")
|
|
parser.add_argument("--output_dir", type=str, help="output dir")
|
|
# inference
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=str2bool,
|
|
default=False,
|
|
help="whether to use TensorRT or not in GPU", )
|
|
parser.add_argument(
|
|
"--use_mkldnn",
|
|
type=str2bool,
|
|
default=False,
|
|
help="whether to use MKLDNN or not in CPU.", )
|
|
parser.add_argument(
|
|
"--precision",
|
|
type=str,
|
|
default='fp32',
|
|
choices=['fp32', 'fp16', 'bf16', 'int8'],
|
|
help="mode of running")
|
|
parser.add_argument(
|
|
"--device",
|
|
default="gpu",
|
|
choices=["gpu", "cpu", "xpu", "npu", "mlu"],
|
|
help="Device selected for inference.", )
|
|
parser.add_argument('--cpu_threads', type=int, default=1)
|
|
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
|
|
# only inference for models trained with csmsc now
|
|
def main():
|
|
args = parse_args()
|
|
|
|
paddle.set_device(args.device)
|
|
|
|
# frontend
|
|
frontend = get_frontend(
|
|
lang=args.lang,
|
|
phones_dict=args.phones_dict,
|
|
tones_dict=args.tones_dict)
|
|
|
|
# am_predictor
|
|
am_predictor = get_predictor(
|
|
model_dir=args.inference_dir,
|
|
model_file=args.am + ".pdmodel",
|
|
params_file=args.am + ".pdiparams",
|
|
device=args.device,
|
|
use_trt=args.use_trt,
|
|
use_mkldnn=args.use_mkldnn,
|
|
cpu_threads=args.cpu_threads,
|
|
precision=args.precision)
|
|
# model: {model_name}_{dataset}
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
|
|
# voc_predictor
|
|
voc_predictor = get_predictor(
|
|
model_dir=args.inference_dir,
|
|
model_file=args.voc + ".pdmodel",
|
|
params_file=args.voc + ".pdiparams",
|
|
device=args.device,
|
|
use_trt=args.use_trt,
|
|
use_mkldnn=args.use_mkldnn,
|
|
cpu_threads=args.cpu_threads,
|
|
precision=args.precision)
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
sentences = get_sentences(text_file=args.text, lang=args.lang)
|
|
|
|
merge_sentences = True
|
|
fs = 24000 if am_dataset != 'ljspeech' else 22050
|
|
# warmup
|
|
for utt_id, sentence in sentences[:3]:
|
|
with timer() as t:
|
|
mel = get_am_output(
|
|
input=sentence,
|
|
am_predictor=am_predictor,
|
|
am=args.am,
|
|
frontend=frontend,
|
|
lang=args.lang,
|
|
merge_sentences=merge_sentences,
|
|
speaker_dict=args.speaker_dict,
|
|
spk_id=args.spk_id, )
|
|
wav = get_voc_output(voc_predictor=voc_predictor, input=mel)
|
|
speed = wav.size / t.elapse
|
|
rtf = fs / speed
|
|
print(
|
|
f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
)
|
|
|
|
print("warm up done!")
|
|
|
|
N = 0
|
|
T = 0
|
|
for utt_id, sentence in sentences:
|
|
with timer() as t:
|
|
mel = get_am_output(
|
|
input=sentence,
|
|
am_predictor=am_predictor,
|
|
am=args.am,
|
|
frontend=frontend,
|
|
lang=args.lang,
|
|
merge_sentences=merge_sentences,
|
|
speaker_dict=args.speaker_dict,
|
|
spk_id=args.spk_id, )
|
|
wav = get_voc_output(voc_predictor=voc_predictor, input=mel)
|
|
|
|
N += wav.size
|
|
T += t.elapse
|
|
speed = wav.size / t.elapse
|
|
rtf = fs / speed
|
|
|
|
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=fs)
|
|
print(
|
|
f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
)
|
|
|
|
print(f"{utt_id} done!")
|
|
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|