You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/phonectic.py

299 lines
10 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from abc import abstractmethod
from typing import List
import numpy as np
import paddle
from g2p_en import G2p
from g2pM import G2pM
from paddlespeech.t2s.frontend.normalizer.normalizer import normalize
from paddlespeech.t2s.frontend.punctuation import get_punctuations
from paddlespeech.t2s.frontend.vocab import Vocab
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
# discard opencc untill we find an easy solution to install it on windows
# from opencc import OpenCC
__all__ = ["Phonetics", "English", "EnglishCharacter", "Chinese"]
class Phonetics(ABC):
@abstractmethod
def __call__(self, sentence):
pass
@abstractmethod
def phoneticize(self, sentence):
pass
@abstractmethod
def numericalize(self, phonemes):
pass
class English(Phonetics):
""" Normalize the input text sequence and convert into pronunciation id sequence.
"""
def __init__(self, phone_vocab_path=None):
self.backend = G2p()
self.phonemes = list(self.backend.phonemes)
self.punctuations = get_punctuations("en")
self.vocab = Vocab(self.phonemes + self.punctuations)
self.vocab_phones = {}
self.punc = ":,;。?!“”‘’':,;.?!"
self.text_normalizer = TextNormalizer()
if phone_vocab_path:
with open(phone_vocab_path, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
self.vocab_phones[phn] = int(id)
def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
start = self.vocab.start_symbol
end = self.vocab.end_symbol
phonemes = ([] if start is None else [start]) \
+ self.backend(sentence) \
+ ([] if end is None else [end])
phonemes = [item for item in phonemes if item in self.vocab.stoi]
return phonemes
def _p2id(self, phonemes: List[str]) -> np.array:
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def get_input_ids(self,
sentence: str,
merge_sentences: bool=False,
to_tensor: bool=True) -> paddle.Tensor:
result = {}
sentences = self.text_normalizer._split(sentence, lang="en")
phones_list = []
temp_phone_ids = []
for sentence in sentences:
phones = self.phoneticize(sentence)
# remove start_symbol and end_symbol
phones = phones[1:-1]
phones = [phn for phn in phones if not phn.isspace()]
# replace unk phone with sp
phones = [
phn
if (phn in self.vocab_phones and phn not in self.punc) else "sp"
for phn in phones
]
if len(phones) != 0:
phones_list.append(phones)
if merge_sentences:
merge_list = sum(phones_list, [])
# rm the last 'sp' to avoid the noise at the end
# cause in the training data, no 'sp' in the end
if merge_list[-1] == 'sp':
merge_list = merge_list[:-1]
phones_list = []
phones_list.append(merge_list)
for part_phones_list in phones_list:
phone_ids = self._p2id(part_phones_list)
if to_tensor:
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
result["phone_ids"] = temp_phone_ids
return result
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Args:
phonemes (List[str]): The list of pronunciation sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [
self.vocab.lookup(item) for item in phonemes
if item in self.vocab.stoi
]
return ids
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence.
Args:
sentence(str): The input text sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
@property
def vocab_size(self):
""" Vocab size.
"""
return len(self.vocab)
class EnglishCharacter(Phonetics):
""" Normalize the input text sequence and convert it into character id sequence.
"""
def __init__(self):
self.backend = G2p()
self.graphemes = list(self.backend.graphemes)
self.punctuations = get_punctuations("en")
self.vocab = Vocab(self.graphemes + self.punctuations)
def phoneticize(self, sentence):
""" Normalize the input text sequence.
Args:
sentence(str): The input text sequence.
Returns:
str: A text sequence after normalize.
"""
words = normalize(sentence)
return words
def numericalize(self, sentence):
""" Convert a text sequence into ids.
Args:
sentence (str): The input text sequence.
Returns:
List[int]:
List of a character id sequence.
"""
ids = [
self.vocab.lookup(item) for item in sentence
if item in self.vocab.stoi
]
return ids
def reverse(self, ids):
""" Convert a character id sequence into text.
Args:
ids (List[int]): List of a character id sequence.
Returns:
str: The input text sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence):
""" Normalize the input text sequence and convert it into character id sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[int]: List of a character id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
@property
def vocab_size(self):
""" Vocab size.
"""
return len(self.vocab)
class Chinese(Phonetics):
"""Normalize Chinese text sequence and convert it into ids.
"""
def __init__(self):
# self.opencc_backend = OpenCC('t2s.json')
self.backend = G2pM()
self.phonemes = self._get_all_syllables()
self.punctuations = get_punctuations("cn")
self.vocab = Vocab(self.phonemes + self.punctuations)
def _get_all_syllables(self):
all_syllables = set([
syllable for k, v in self.backend.cedict.items() for syllable in v
])
return list(all_syllables)
def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Args:
sentence(str): The input text sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
# simplified = self.opencc_backend.convert(sentence)
simplified = sentence
phonemes = self.backend(simplified)
start = self.vocab.start_symbol
end = self.vocab.end_symbol
phonemes = ([] if start is None else [start]) \
+ phonemes \
+ ([] if end is None else [end])
return self._filter_symbols(phonemes)
def _filter_symbols(self, phonemes):
cleaned_phonemes = []
for item in phonemes:
if item in self.vocab.stoi:
cleaned_phonemes.append(item)
else:
for char in item:
if char in self.vocab.stoi:
cleaned_phonemes.append(char)
return cleaned_phonemes
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Args:
phonemes(List[str]): The list of pronunciation sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [self.vocab.lookup(item) for item in phonemes]
return ids
def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
@property
def vocab_size(self):
""" Vocab size.
"""
return len(self.vocab)
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]