You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.1 KiB
178 lines
6.1 KiB
# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Modified from speechbrain 2023 (https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/utils/data_utils.py)
|
|
import collections.abc
|
|
import csv
|
|
import os
|
|
import pathlib
|
|
import re
|
|
import shutil
|
|
import urllib.request
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import tqdm
|
|
|
|
|
|
def batch_pad_right(array: list, mode="constant", value=0):
|
|
"""Given a list of paddle tensors it batches them together by padding to the right
|
|
on each dimension in order to get same length for all.
|
|
|
|
Parameters
|
|
----------
|
|
array : list
|
|
List of tensor we wish to pad together.
|
|
mode : str
|
|
Padding mode see numpy.pad documentation.
|
|
value : float
|
|
Padding value see numpy.pad documentation.
|
|
|
|
Returns
|
|
-------
|
|
batched : numpy array
|
|
Padded numpy array.
|
|
valid_vals : list
|
|
List containing proportion for each dimension of original, non-padded values.
|
|
|
|
"""
|
|
|
|
if not len(array):
|
|
raise IndexError("Tensors list must not be empty")
|
|
|
|
if len(array) == 1:
|
|
# if there is only one tensor in the batch we simply unsqueeze it.
|
|
return np.expand_dims(array[0], 0), np.array([1.0], dtype="float32")
|
|
if not (any(
|
|
[array[i].ndim == array[0].ndim for i in range(1, len(array))])):
|
|
raise IndexError("All array must have same number of dimensions")
|
|
|
|
# FIXME we limit the support here: we allow padding of only the first dimension
|
|
# need to remove this when feat extraction is updated to handle multichannel.
|
|
max_shape = []
|
|
for dim in range(array[0].ndim):
|
|
if dim != 0:
|
|
if not all(
|
|
[x.shape[dim] == array[0].shape[dim] for x in array[1:]]):
|
|
raise EnvironmentError(
|
|
"Tensors should have same dimensions except for the first one"
|
|
)
|
|
max_shape.append(max([x.shape[dim] for x in array]))
|
|
|
|
batched = []
|
|
valid = []
|
|
for t in array:
|
|
# for each tensor we apply pad_right_to
|
|
padded, valid_percent = pad_right_to(
|
|
t, max_shape, mode=mode, value=value)
|
|
batched.append(padded)
|
|
valid.append(valid_percent[0])
|
|
|
|
batched = np.stack(batched)
|
|
|
|
return batched, np.array(valid, dtype="float32")
|
|
|
|
|
|
np_str_obj_array_pattern = re.compile(r"[SaUO]")
|
|
|
|
|
|
def pad_right_to(
|
|
array: np.ndarray,
|
|
target_shape: (list, tuple),
|
|
mode="constant",
|
|
value=0, ):
|
|
"""
|
|
This function takes a numpy of arbitrary shape and pads it to target
|
|
shape by appending values on the right.
|
|
|
|
Parameters
|
|
----------
|
|
array : input numpy array
|
|
Input tensor whose dimension we need to pad.
|
|
target_shape : (list, tuple)
|
|
Target shape we want for the target tensor its len must be equal to tensor.ndim
|
|
mode : str
|
|
Pad mode, please refer to numpy.pad documentation.
|
|
value : float
|
|
Pad value, please refer to numpy.pad documentation.
|
|
|
|
Returns
|
|
-------
|
|
array : numpy array
|
|
Padded numpy array.
|
|
valid_vals : list
|
|
List containing proportion for each dimension of original, non-padded values.
|
|
"""
|
|
assert len(target_shape) == array.ndim
|
|
pads = [] # this contains the abs length of the padding for each dimension.
|
|
valid_vals = [] # this contains the relative lengths for each dimension.
|
|
i = len(target_shape) - 1 # iterating over target_shape ndims
|
|
j = 0
|
|
while i >= 0:
|
|
assert (target_shape[i] >= array.shape[i]
|
|
), "Target shape must be >= original shape for every dim"
|
|
pads.extend([0, target_shape[i] - array.shape[i]])
|
|
valid_vals.append(array.shape[j] / target_shape[j])
|
|
i -= 1
|
|
j += 1
|
|
array = np.pad(array, pads, mode, constant_values=(value, value))
|
|
|
|
return array, valid_vals
|
|
|
|
|
|
def mod_default_collate(batch):
|
|
"""Makes a tensor from list of batch values.
|
|
|
|
Note that this doesn't need to zip(*) values together
|
|
as PaddedBatch connects them already (by key).
|
|
|
|
Here the idea is not to error out.
|
|
"""
|
|
elem = batch[0]
|
|
elem_type = type(elem)
|
|
if isinstance(elem, paddle.Tensor):
|
|
out = None
|
|
try:
|
|
if paddle.io.get_worker_info() is not None:
|
|
|
|
# If we're in a background process, concatenate directly into a
|
|
# shared memory tensor to avoid an extra copy
|
|
numel = sum([x.numel() for x in batch])
|
|
storage = elem.storage()._new_shared(numel)
|
|
out = elem.new(storage)
|
|
return paddle.stack(batch, 0, name=out)
|
|
except RuntimeError: # Unequal size:
|
|
return batch
|
|
elif (elem_type.__module__ == "numpy" and elem_type.__name__ != "str_" and
|
|
elem_type.__name__ != "string_"):
|
|
try:
|
|
if (elem_type.__name__ == "ndarray" or
|
|
elem_type.__name__ == "memmap"):
|
|
# array of string classes and object
|
|
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
|
return batch
|
|
return mod_default_collate(
|
|
[paddle.to_tensor(b, dtype=b.dtype) for b in batch])
|
|
elif elem.shape == (): # scalars
|
|
return paddle.to_tensor(batch, dtype=batch.dtype)
|
|
except RuntimeError: # Unequal size
|
|
return batch
|
|
elif isinstance(elem, float):
|
|
return paddle.to_tensor(batch, dtype=paddle.float64)
|
|
elif isinstance(elem, int):
|
|
return paddle.to_tensor(batch, dtype=paddle.int64)
|
|
else:
|
|
return batch
|