|
|
#!/usr/bin/env bash
|
|
|
set -xe
|
|
|
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
|
|
|
# 参数说明
|
|
|
function _set_params(){
|
|
|
|
|
|
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
|
|
config_path=${2:-"conf/conformer.yaml"}
|
|
|
output=${3:-"exp/conformer"}
|
|
|
seed=${4:-"0"}
|
|
|
ngpu=${5:-"1"}
|
|
|
profiler_options=${6:-"None"}
|
|
|
batch_size=${7:-"32"}
|
|
|
fp_item=${8:-"fp32"}
|
|
|
TRAIN_LOG_DIR=${9:-$(pwd)}
|
|
|
|
|
|
benchmark_max_step=0
|
|
|
|
|
|
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
|
|
|
|
|
|
# 以下不用修改
|
|
|
device=${CUDA_VISIBLE_DEVICES//,/ }
|
|
|
arr=(${device})
|
|
|
num_gpu_devices=${#arr[*]}
|
|
|
log_file=${run_log_path}/recoder_${run_mode}_bs${batch_size}_${fp_item}_ngpu${ngpu}.txt
|
|
|
}
|
|
|
|
|
|
function _train(){
|
|
|
echo "Train on ${num_gpu_devices} GPUs"
|
|
|
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
|
|
train_cmd="--config=${config_path}
|
|
|
--output=${output}
|
|
|
--seed=${seed}
|
|
|
--nproc=${ngpu}
|
|
|
--profiler-options "${profiler_options}"
|
|
|
--benchmark-batch-size ${batch_size}
|
|
|
--benchmark-max-step ${benchmark_max_step} "
|
|
|
|
|
|
echo "run_mode "${run_mode}
|
|
|
|
|
|
case ${run_mode} in
|
|
|
sp) train_cmd="python3 -u ${BIN_DIR}/train.py "${train_cmd} ;;
|
|
|
mp) train_cmd="python3 -u ${BIN_DIR}/train.py "${train_cmd} ;;
|
|
|
*) echo "choose run_mode(sp or mp)"; exit 1;
|
|
|
esac
|
|
|
echo ${train_cmd}
|
|
|
# 以下不用修改
|
|
|
timeout 15m ${train_cmd} > ${log_file} 2>&1
|
|
|
if [ $? -ne 0 ];then
|
|
|
echo -e "${model_name}, FAIL"
|
|
|
export job_fail_flag=1
|
|
|
else
|
|
|
echo -e "${model_name}, SUCCESS"
|
|
|
export job_fail_flag=0
|
|
|
fi
|
|
|
trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM
|
|
|
|
|
|
if [ $run_mode = "mp" -a -d mylog ]; then
|
|
|
rm ${log_file}
|
|
|
cp mylog/workerlog.0 ${log_file}
|
|
|
fi
|
|
|
}
|
|
|
|
|
|
_set_params $@
|
|
|
_train
|