You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
xiongxinlei
d5142e5e15
|
3 years ago | |
---|---|---|
.. | ||
README.md | 3 years ago | |
README_cn.md | 3 years ago | |
run.sh | 3 years ago |
README.md
(简体中文|English)
Speech Verification)
Introduction
Speaker Verification, refers to the problem of getting a speaker embedding from an audio.
This demo is an implementation to extract speaker embedding from a specific audio file. It can be done by a single command or a few lines in python using PaddleSpeech
.
Usage
1. Installation
see installation.
You can choose one way from easy, meduim and hard to install paddlespeech.
2. Prepare Input File
The input of this demo should be a WAV file(.wav
), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
3. Usage
-
Command Line(Recommended)
paddlespeech vector --task spk --input 85236145389.wav echo -e "demo1 85236145389.wav" > vec.job paddlespeech vector --task spk --input vec.job echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
Usage:
paddlespeech asr --help
Arguments:
input
(required): Audio file to recognize.model
: Model type of asr task. Default:conformer_wenetspeech
.sample_rate
: Sample rate of the model. Default:16000
.config
: Config of asr task. Use pretrained model when it is None. Default:None
.ckpt_path
: Model checkpoint. Use pretrained model when it is None. Default:None
.device
: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
Output:
demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268
-3.04878 1.611095 10.127234 -10.534177 -15.821609
1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228
-11.343508 2.3385992 -8.719341 14.213509 15.404744
-0.39327756 6.338786 2.688887 8.7104025 17.469526
-8.77959 7.0576906 4.648855 -1.3089896 -23.294737
8.013747 13.891729 -9.926753 5.655307 -5.9422326
-22.842539 0.6293588 -18.46266 -10.811862 9.8192625
3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942
1.7594414 -0.6485091 4.485623 2.0207152 7.264915
-6.40137 23.63524 2.9711294 -22.708025 9.93719
20.354511 -10.324688 -0.700492 -8.783211 -5.27593
15.999649 3.3004563 12.747926 15.429879 4.7849145
5.6699696 -2.3826702 10.605882 3.9112158 3.1500628
15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124
-9.224193 14.568347 -10.568833 4.982321 -4.342062
0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362
-6.680575 0.4757669 -5.035051 -6.7964664 16.865469
-11.54324 7.681869 0.44475392 9.708182 -8.932846
0.4123232 -4.361452 1.3948607 9.511665 0.11667654
2.9079323 6.049952 9.275183 -18.078873 6.2983274
-0.7500531 -2.725033 -7.6027865 3.3404543 2.990815
4.010979 11.000591 -2.8873312 7.1352735 -16.79663
18.495346 -14.293832 7.89578 2.2714825 22.976387
-4.875734 -3.0836344 -2.9999814 13.751918 6.448228
-11.924197 2.171869 2.0423572 -6.173772 10.778437
25.77281 -4.9495463 14.57806 0.3044315 2.6132357
-7.591999 -2.076944 9.025118 1.7834753 -3.1799617
-4.9401326 23.465864 5.1685796 -9.018578 9.037825
-4.4150195 6.859591 -12.274467 -0.88911164 5.186309
-3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652
-12.397416 -12.719869 -1.395601 2.1150916 5.7381287
-4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127
8.731719 -20.778936 -11.495662 5.8033476 -4.752041
10.833007 -6.717991 4.504732 13.4244375 1.1306485
7.3435574 1.400918 14.704036 -9.501399 7.2315617
-6.417456 1.3333273 11.872697 -0.30664724 8.8845
6.5569253 4.7948146 0.03662816 -8.704245 6.224871
-3.2701402 -11.508579 ]
-
Python API
import paddle from paddlespeech.cli import VectorExecutor vector_executor = VectorExecutor() audio_emb = vector_executor( model='ecapatdnn_voxceleb12', sample_rate=16000, config=None, ckpt_path=None, audio_file='./85236145389.wav', force_yes=False, device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb))
Output:
# Vector Result: [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 -3.04878 1.611095 10.127234 -10.534177 -15.821609 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 -11.343508 2.3385992 -8.719341 14.213509 15.404744 -0.39327756 6.338786 2.688887 8.7104025 17.469526 -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 8.013747 13.891729 -9.926753 5.655307 -5.9422326 -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 -6.40137 23.63524 2.9711294 -22.708025 9.93719 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 15.999649 3.3004563 12.747926 15.429879 4.7849145 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 -9.224193 14.568347 -10.568833 4.982321 -4.342062 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 -11.54324 7.681869 0.44475392 9.708182 -8.932846 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 2.9079323 6.049952 9.275183 -18.078873 6.2983274 -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 18.495346 -14.293832 7.89578 2.2714825 22.976387 -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 -11.924197 2.171869 2.0423572 -6.173772 10.778437 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 -4.9401326 23.465864 5.1685796 -9.018578 9.037825 -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 10.833007 -6.717991 4.504732 13.4244375 1.1306485 7.3435574 1.400918 14.704036 -9.501399 7.2315617 -6.417456 1.3333273 11.872697 -0.30664724 8.8845 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 -3.2701402 -11.508579 ]
4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
Model | Sample Rate |
---|---|
ecapatdnn_voxceleb12 | 16k |