You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/zh_normalization/text_normlization.py

155 lines
6.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List
from .char_convert import tranditional_to_simplified
from .chronology import RE_DATE
from .chronology import RE_DATE2
from .chronology import RE_TIME
from .chronology import RE_TIME_RANGE
from .chronology import replace_date
from .chronology import replace_date2
from .chronology import replace_time
from .constants import F2H_ASCII_LETTERS
from .constants import F2H_DIGITS
from .constants import F2H_SPACE
from .num import RE_DECIMAL_NUM
from .num import RE_DEFAULT_NUM
from .num import RE_FRAC
from .num import RE_INTEGER
from .num import RE_NUMBER
from .num import RE_PERCENTAGE
from .num import RE_POSITIVE_QUANTIFIERS
from .num import RE_RANGE
from .num import replace_default_num
from .num import replace_frac
from .num import replace_negative_num
from .num import replace_number
from .num import replace_percentage
from .num import replace_positive_quantifier
from .num import replace_range
from .phonecode import RE_MOBILE_PHONE
from .phonecode import RE_NATIONAL_UNIFORM_NUMBER
from .phonecode import RE_TELEPHONE
from .phonecode import replace_mobile
from .phonecode import replace_phone
from .quantifier import RE_TEMPERATURE
from .quantifier import replace_measure
from .quantifier import replace_temperature
class TextNormalizer():
def __init__(self):
self.SENTENCE_SPLITOR = re.compile(r'([:、,;。?!,;?!][”’]?)')
def _split(self, text: str, lang="zh") -> List[str]:
"""Split long text into sentences with sentence-splitting punctuations.
Args:
text (str): The input text.
Returns:
List[str]: Sentences.
"""
# Only for pure Chinese here
if lang == "zh":
text = text.replace(" ", "")
# 过滤掉特殊字符
text = re.sub(r'[——《》【】<=>{}()#&@“”^_|…\\]', '', text)
text = self.SENTENCE_SPLITOR.sub(r'\1\n', text)
text = text.strip()
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
return sentences
def _post_replace(self, sentence: str) -> str:
sentence = sentence.replace('/', '')
sentence = sentence.replace('~', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('', '')
sentence = sentence.replace('α', '阿尔法')
sentence = sentence.replace('β', '贝塔')
sentence = sentence.replace('γ', '伽玛').replace('Γ', '伽玛')
sentence = sentence.replace('δ', '德尔塔').replace('Δ', '德尔塔')
sentence = sentence.replace('ε', '艾普西龙')
sentence = sentence.replace('ζ', '捷塔')
sentence = sentence.replace('η', '依塔')
sentence = sentence.replace('θ', '西塔').replace('Θ', '西塔')
sentence = sentence.replace('ι', '艾欧塔')
sentence = sentence.replace('κ', '喀帕')
sentence = sentence.replace('λ', '拉姆达').replace('Λ', '拉姆达')
sentence = sentence.replace('μ', '')
sentence = sentence.replace('ν', '')
sentence = sentence.replace('ξ', '克西').replace('Ξ', '克西')
sentence = sentence.replace('ο', '欧米克伦')
sentence = sentence.replace('π', '').replace('Π', '')
sentence = sentence.replace('ρ', '')
sentence = sentence.replace('ς', '西格玛').replace('Σ', '西格玛').replace(
'σ', '西格玛')
sentence = sentence.replace('τ', '')
sentence = sentence.replace('υ', '宇普西龙')
sentence = sentence.replace('φ', '服艾').replace('Φ', '服艾')
sentence = sentence.replace('χ', '')
sentence = sentence.replace('ψ', '普赛').replace('Ψ', '普赛')
sentence = sentence.replace('ω', '欧米伽').replace('Ω', '欧米伽')
# re filter special characters, have one more character "-" than line 68
sentence = re.sub(r'[-——《》【】<=>{}()#&@“”^_|…\\]', '', sentence)
return sentence
def normalize_sentence(self, sentence: str) -> str:
# basic character conversions
sentence = tranditional_to_simplified(sentence)
sentence = sentence.translate(F2H_ASCII_LETTERS).translate(
F2H_DIGITS).translate(F2H_SPACE)
# number related NSW verbalization
sentence = RE_DATE.sub(replace_date, sentence)
sentence = RE_DATE2.sub(replace_date2, sentence)
# range first
sentence = RE_TIME_RANGE.sub(replace_time, sentence)
sentence = RE_TIME.sub(replace_time, sentence)
sentence = RE_TEMPERATURE.sub(replace_temperature, sentence)
sentence = replace_measure(sentence)
sentence = RE_FRAC.sub(replace_frac, sentence)
sentence = RE_PERCENTAGE.sub(replace_percentage, sentence)
sentence = RE_MOBILE_PHONE.sub(replace_mobile, sentence)
sentence = RE_TELEPHONE.sub(replace_phone, sentence)
sentence = RE_NATIONAL_UNIFORM_NUMBER.sub(replace_phone, sentence)
sentence = RE_RANGE.sub(replace_range, sentence)
sentence = RE_INTEGER.sub(replace_negative_num, sentence)
sentence = RE_DECIMAL_NUM.sub(replace_number, sentence)
sentence = RE_POSITIVE_QUANTIFIERS.sub(replace_positive_quantifier,
sentence)
sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence)
sentence = RE_NUMBER.sub(replace_number, sentence)
sentence = self._post_replace(sentence)
return sentence
def normalize(self, text: str) -> List[str]:
sentences = self._split(text)
sentences = [self.normalize_sentence(sent) for sent in sentences]
return sentences