You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tianhao zhang
cda440e6f0
|
2 years ago | |
---|---|---|
.. | ||
bin | 2 years ago | |
conf | 2 years ago | |
engine | 2 years ago | |
restful | 3 years ago | |
tests | 3 years ago | |
utils | 2 years ago | |
ws | 3 years ago | |
README.md | 3 years ago | |
README_cn.md | 3 years ago | |
__init__.py | 3 years ago | |
base_commands.py | 3 years ago | |
entry.py | 3 years ago | |
executor.py | 3 years ago | |
util.py | 3 years ago |
README.md
PaddleSpeech Server Command Line
(简体中文|English)
The simplest approach to use PaddleSpeech Server including server and client.
PaddleSpeech Server
Help
paddlespeech_server help
Start the server
First set the service-related configuration parameters, similar to ./conf/application.yaml
. Set engine_list
, which represents the speech tasks included in the service to be started.
Note: If the service can be started normally in the container, but the client access IP is unreachable, you can try to replace the host
address in the configuration file with the local IP address.
Then start the service:
paddlespeech_server start --config_file ./conf/application.yaml
PaddleSpeech Client
Help
paddlespeech_client help
Access speech recognition services
paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
Access text to speech services
paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "你好,欢迎使用百度飞桨深度学习框架!" --output output.wav
Access audio classification services
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav
Online ASR Server
Lanuch online asr server
paddlespeech_server start --config_file conf/ws_conformer_application.yaml
Access online asr server
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
Online TTS Server
Lanuch online tts server
paddlespeech_server start --config_file conf/tts_online_application.yaml
Access online tts server
paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --input "您好,欢迎使用百度飞桨深度学习框架!" --output output.wav
Speaker Verification
Lanuch speaker verification server
paddlespeech_server start --config_file conf/vector_application.yaml
Extract speaker embedding from aduio
paddlespeech_client vector --task spk --server_ip 127.0.0.1 --port 8090 --input 85236145389.wav
Get score with speaker audio embedding
paddlespeech_client vector --task score --server_ip 127.0.0.1 --port 8090 --enroll 123456789.wav --test 85236145389.wav