You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/data_utils/data.py

248 lines
9.9 KiB

"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
import paddle.v2 as paddle
from data_utils import utils
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
from data_utils.speech import SpeechSegment
from data_utils.normalizer import FeatureNormalizer
class DataGenerator(object):
"""
DataGenerator provides basic audio data preprocessing pipeline, and offers
data reader interfaces of PaddlePaddle requirements.
:param vocab_filepath: Vocabulary filepath for indexing tokenized
transcripts.
:type vocab_filepath: basestring
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|basestring
:param augmentation_config: Augmentation configuration in json string.
Details see AugmentationPipeline.__doc__.
:type augmentation_config: str
:param max_duration: Audio with duration (in seconds) greater than
this will be discarded.
:type max_duration: float
:param min_duration: Audio with duration (in seconds) smaller than
this will be discarded.
:type min_duration: float
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param random_seed: Random seed.
:type random_seed: int
"""
def __init__(self,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
random_seed=0):
self._max_duration = max_duration
self._min_duration = min_duration
self._normalizer = FeatureNormalizer(mean_std_filepath)
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
vocab_filepath=vocab_filepath,
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq)
self._rng = random.Random(random_seed)
self._epoch = 0
def batch_reader_creator(self,
manifest_path,
batch_size,
min_batch_size=1,
padding_to=-1,
flatten=False,
sortagrad=False,
batch_shuffle=False):
"""
Batch data reader creator for audio data. Return a callable generator
function to produce batches of data.
Audio features within one batch will be padded with zeros to have the
same shape, or a user-defined shape.
:param manifest_path: Filepath of manifest for audio files.
:type manifest_path: basestring
:param batch_size: Number of instances in a batch.
:type batch_size: int
:param min_batch_size: Any batch with batch size smaller than this will
be discarded. (To be deprecated in the future.)
:type min_batch_size: int
:param padding_to: If set -1, the maximun shape in the batch
will be used as the target shape for padding.
Otherwise, `padding_to` will be the target shape.
:type padding_to: int
:param flatten: If set True, audio features will be flatten to 1darray.
:type flatten: bool
:param sortagrad: If set True, sort the instances by audio duration
in the first epoch for speed up training.
:type sortagrad: bool
:param batch_shuffle: If set True, instances are batch-wise shuffled.
For more details, please see
``_batch_shuffle.__doc__``.
If sortagrad is True, batch_shuffle is disabled
for the first epoch.
:type batch_shuffle: bool
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def batch_reader():
# read manifest
manifest = utils.read_manifest(
manifest_path=manifest_path,
max_duration=self._max_duration,
min_duration=self._min_duration)
# sort (by duration) or batch-wise shuffle the manifest
if self._epoch == 0 and sortagrad:
manifest.sort(key=lambda x: x["duration"])
elif batch_shuffle:
manifest = self._batch_shuffle(manifest, batch_size)
# prepare batches
instance_reader = self._instance_reader_creator(manifest)
batch = []
for instance in instance_reader():
batch.append(instance)
if len(batch) == batch_size:
yield self._padding_batch(batch, padding_to, flatten)
batch = []
if len(batch) >= min_batch_size:
yield self._padding_batch(batch, padding_to, flatten)
self._epoch += 1
return batch_reader
@property
def feeding(self):
"""Returns data reader's feeding dict.
:return: Data feeding dict.
:rtype: dict
"""
return {"audio_spectrogram": 0, "transcript_text": 1}
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._speech_featurizer.vocab_list
def _process_utterance(self, filename, transcript):
"""Load, augment, featurize and normalize for speech data."""
speech_segment = SpeechSegment.from_file(filename, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
specgram = self._normalizer.apply(specgram)
return specgram, text_ids
def _instance_reader_creator(self, manifest):
"""
Instance reader creator. Create a callable function to produce
instances of data.
Instance: a tuple of ndarray of audio spectrogram and a list of
token indices for transcript.
"""
def reader():
for instance in manifest:
yield self._process_utterance(instance["audio_filepath"],
instance["text"])
return reader
def _padding_batch(self, batch, padding_to=-1, flatten=False):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
# padding
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
new_batch.append((padded_audio, text))
return new_batch
def _batch_shuffle(self, manifest, batch_size):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly shift `k` instances in order to create different batches
for different epochs. Create minibatches.
4. Shuffle the minibatches.
:param manifest: Manifest contents. List of dict.
:type manifest: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:return: Batch shuffled mainifest.
:rtype: list
"""
manifest.sort(key=lambda x: x["duration"])
shift_len = self._rng.randint(0, batch_size - 1)
batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size)
self._rng.shuffle(batch_manifest)
batch_manifest = list(sum(batch_manifest, ()))
res_len = len(manifest) - shift_len - len(batch_manifest)
batch_manifest.extend(manifest[-res_len:])
batch_manifest.extend(manifest[0:shift_len])
return batch_manifest