You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/data_utils/audio.py

594 lines
24 KiB

"""Contains the audio segment class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import io
import soundfile
import scikits.samplerate
from scipy import signal
import random
class AudioSegment(object):
"""Monaural audio segment abstraction.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:raises TypeError: If the sample data type is not float or int.
"""
def __init__(self, samples, sample_rate):
"""Create audio segment from samples.
Samples are convert float32 internally, with int scaled to [-1, 1].
"""
self._samples = self._convert_samples_to_float32(samples)
self._sample_rate = sample_rate
if self._samples.ndim >= 2:
self._samples = np.mean(self._samples, 1)
def __eq__(self, other):
"""Return whether two objects are equal."""
if type(other) is not type(self):
return False
if self._sample_rate != other._sample_rate:
return False
if self._samples.shape != other._samples.shape:
return False
if np.any(self.samples != other._samples):
return False
return True
def __ne__(self, other):
"""Return whether two objects are unequal."""
return not self.__eq__(other)
def __len__(self):
"""Returns length of segment in samples."""
return self.num_samples
def __add__(self, other):
"""Add samples from another segment to those of this segment and return
a new segment (sample-wise addition, not segment concatenation).
:param other: Segment containing samples to be
added in.
:type other: AudioSegment
:return: New segment containing resulting samples.
:rtype: AudioSegment
:raise TypeError: If sample rates of segments don't match,
or if length of segments don't match.
"""
if type(self) != type(other):
raise TypeError("Cannot add segment of different type: {}"
.format(type(other)))
if self._sample_rate != other._sample_rate:
raise TypeError("Sample rates must match to add segments.")
if len(self._samples) != len(other._samples):
raise TypeError("Segment lengths must match to add segments.")
samples = self.samples + other.samples
return type(self)(samples, sample_rate=self._sample_rate)
def __str__(self):
"""Return human-readable representation of segment."""
return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, "
"rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate,
self.duration, self.rms_db))
@classmethod
def from_file(cls, file):
"""Create audio segment from audio file.
:param filepath: Filepath or file object to audio file.
:type filepath: basestring|file
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(file, dtype='float32')
return cls(samples, sample_rate)
@classmethod
def from_bytes(cls, bytes):
"""Create audio segment from a byte string containing audio samples.
:param bytes: Byte string containing audio samples.
:type bytes: str
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(
io.BytesIO(bytes), dtype='float32')
return cls(samples, sample_rate)
@classmethod
def concatenate(cls, *segments):
"""Concatenate an arbitrary number of audio segments together.
:param *segments: Input audio segments
:type *segments: AudioSegment
:return: Audio segment instance.
:rtype: AudioSegment
:raises ValueError: If number of segments is zero, or if sample_rate
not match between two audio segments
:raises TypeError: If item of segments is not Audiosegment instance
"""
# Perform basic sanity-checks.
if len(segments) == 0:
raise ValueError("No audio segments are given to concatenate.")
sample_rate = segments[0]._sample_rate
for seg in segments:
if sample_rate != seg._sample_rate:
raise ValueError("Can't concatenate segments with "
"different sample rates")
if type(seg) is not cls:
raise TypeError("Only audio segments of the same type "
"instance can be concatenated.")
samples = np.concatenate([seg.samples for seg in segments])
return cls(samples, sample_rate)
def to_wav_file(self, filepath, dtype='float32'):
"""Save audio segment to disk as wav file.
:param filepath: WAV filepath or file object to save the
audio segment.
:type filepath: basestring|file
:param dtype: Subtype for audio file. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:raises TypeError: If dtype is not supported.
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
subtype_map = {
'int16': 'PCM_16',
'int32': 'PCM_32',
'float32': 'FLOAT',
'float64': 'DOUBLE'
}
soundfile.write(
filepath,
samples,
self._sample_rate,
format='WAV',
subtype=subtype_map[dtype])
def slice_from_file(self, file, start=None, end=None):
"""Loads a small section of an audio without having to load
the entire file into the memory which can be incredibly wasteful.
:param file: Input audio filepath
:type file: basestring
:param start: Start time in seconds. If start is negative, it wraps
around from the end. If not provided, this function
reads from the very beginning.
:type start: float
:param end: End time in seconds. If end is negative, it wraps around
from the end. If not provided, the default behvaior is
to read to the end of the file.
:type end: float
:return: The specified slice of input audio in the audio.AudioSegment format.
:rtype: AudioSegment
:rainse ValueError: If the position is error, or if the time is out bounds.
"""
sndfile = soundfile.SoundFile(file)
sample_rate = sndfile.samplerate
duration = float(len(sndfile)) / sample_rate
start = 0. if start is None else start
end = 0. if end is None else end
if start < 0.0:
start += duration
if end < 0.0:
end += duration
if start < 0.0:
raise ValueError("The slice start position (%f s) is out of "
"bounds. Filename: %s" % (start, file))
if end < 0.0:
raise ValueError("The slice end position (%f s) is out of bounds "
"Filename: %s" % (end, file))
if start > end:
raise ValueError("The slice start position (%f s) is later than "
"the slice end position (%f s)." % (start, end))
if end > duration:
raise ValueError("The slice end time (%f s) is out of bounds "
"(> %f s) Filename: %s" % (end, duration, file))
start_frame = int(start * sample_rate)
end_frame = int(end * sample_rate)
sndfile.seek(start_frame)
data = sndfile.read(frames=end_frame - start_frame, dtype='float32')
return type(self)(data, sample_rate)
def make_silence(self, duration, sample_rate):
"""Creates a silent audio segment of the given duration and
sample rate.
:param duration: Length of silence in seconds
:type duration: float
:param sample_rate: Sample rate
:type sample_rate: float
:return: Silence of the given duration
:rtype: AudioSegment
"""
samples = np.zeros(int(duration * sample_rate))
return type(self)(samples, sample_rate)
def to_bytes(self, dtype='float32'):
"""Create a byte string containing the audio content.
:param dtype: Data type for export samples. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:return: Byte string containing audio content.
:rtype: str
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
return samples.tostring()
def apply_gain(self, gain):
"""Apply gain in decibels to samples.
Note that this is an in-place transformation.
:param gain: Gain in decibels to apply to samples.
:type gain: float
"""
self._samples *= 10.**(gain / 20.)
def change_speed(self, speed_rate):
"""Change the audio speed by linear interpolation.
Note that this is an in-place transformation.
:param speed_rate: Rate of speed change:
speed_rate > 1.0, speed up the audio;
speed_rate = 1.0, unchanged;
speed_rate < 1.0, slow down the audio;
speed_rate <= 0.0, not allowed, raise ValueError.
:type speed_rate: float
:raises ValueError: If speed_rate <= 0.0.
"""
if speed_rate <= 0:
raise ValueError("speed_rate should be greater than zero.")
old_length = self._samples.shape[0]
new_length = int(old_length / speed_rate)
old_indices = np.arange(old_length)
new_indices = np.linspace(start=0, stop=old_length, num=new_length)
self._samples = np.interp(new_indices, old_indices, self._samples)
def normalize(self, target_db=-20, max_gain_db=300.0):
"""Normalize audio to be desired RMS value in decibels.
Note that this is an in-place transformation.
:param target_db: Target RMS value in decibels. This value should
be less than 0.0 as 0.0 is full-scale audio.
:type target_db: float
:param max_gain_db: Max amount of gain in dB that can be applied for
normalization. This is to prevent nans when attempting
to normalize a signal consisting of all zeros.
:type max_gain_db: float
:raises ValueError: If the required gain to normalize the segment to
the target_db value exceeds max_gain_db.
"""
gain = target_db - self.rms_db
if gain > max_gain_db:
raise ValueError(
"Unable to normalize segment to %f dB because it has an RMS "
"value of %f dB and the difference exceeds max_gain_db (%f dB)"
% (target_db, self.rms_db, max_gain_db))
self.apply_gain(min(max_gain_db, target_db - self.rms_db))
def normalize_online_bayesian(self,
target_db,
prior_db,
prior_samples,
startup_delay=0.0):
"""Normalize audio using a production-compatible online/causal algorithm.
This uses an exponential likelihood and gamma prior to make online estimates
of the RMS even when there are very few samples.
Note that this is an in-place transformation.
:param target_db: Target RMS value in decibels
:type target_bd: float
:param prior_db: Prior RMS estimate in decibels
:type prior_db: float
:param prior_samples: Prior strength in number of samples
:type prior_samples: float
:param startup_delay: Default 0.0 s. If provided, this function will accrue
statistics for the first startup_delay seconds before
applying online normalization.
:type startup_delay: float
"""
# Estimate total RMS online
startup_sample_idx = min(self.num_samples - 1,
int(self.sample_rate * startup_delay))
prior_mean_squared = 10.**(prior_db / 10.)
prior_sum_of_squares = prior_mean_squared * prior_samples
cumsum_of_squares = np.cumsum(self.samples**2)
sample_count = np.arange(len(self)) + 1
if startup_sample_idx > 0:
cumsum_of_squares[:startup_sample_idx] = \
cumsum_of_squares[startup_sample_idx]
sample_count[:startup_sample_idx] = \
sample_count[startup_sample_idx]
mean_squared_estimate = ((cumsum_of_squares + prior_sum_of_squares) /
(sample_count + prior_samples))
rms_estimate_db = 10 * np.log10(mean_squared_estimate)
# Compute required time-varying gain
gain_db = target_db - rms_estimate_db
self.apply_gain(gain_db)
def resample(self, target_sample_rate, quality='sinc_medium'):
"""Resample audio segment. This resamples the audio to a new
sample rate.
Note that this is an in-place transformation.
:param target_sample_rate: Target sample rate
:type target_sample_rate: int
:param quality: One of {'sinc_fastest', 'sinc_medium', 'sinc_best'}.
Sets resampling speed/quality tradeoff.
See http://www.mega-nerd.com/SRC/api_misc.html#Converters
:type quality: basestring
"""
resample_ratio = target_sample_rate / self._sample_rate
new_samples = scikits.samplerate.resample(
self._samples, r=resample_ratio, type=quality)
self._samples = new_samples
self._sample_rate = target_sample_rate
def pad_silence(self, duration, sides='both'):
"""Pads this audio sample with a period of silence.
Note that this is an in-place transformation.
:param duration: Length of silence in seconds to pad
:type duration: float
:param sides: Position for padding
'beginning' - adds silence in the beginning
'end' - adds silence in the end
'both' - adds silence in both the beginning and the end.
:type sides: str
:raises ValueError: If the sides not surport
"""
if duration == 0.0:
return self
cls = type(self)
silence = self.make_silence(duration, self._sample_rate)
if sides == "beginning":
padded = cls.concatenate(silence, self)
elif sides == "end":
padded = cls.concatenate(self, silence)
elif sides == "both":
padded = cls.concatenate(silence, self, silence)
else:
raise ValueError("Unknown value for the kwarg %s" % sides)
self._samples = padded._samples
self._sample_rate = padded._sample_rate
def subsegment(self, start_sec=None, end_sec=None):
"""Return new AudioSegment containing audio between given boundaries.
:param start_sec: Beginning of subsegment in seconds,
(beginning of segment if None).
:type start_sec: float
:param end_sec: End of subsegment in seconds,
(end of segment if None).
:type end_sec: float
:return: New AudioSegment containing specified subsegment.
:rtype: AudioSegment
"""
start_sec = 0.0 if start_sec is None else start_sec
end_sec = self.duration if end_sec is None else end_sec
# negative boundaries are relative to end of segment
if start_sec < 0.0:
start_sec = self.duration + start_sec
if end_sec < 0.0:
end_sec = self.duration + end_sec
start_sample = int(round(start_sec * self._sample_rate))
end_sample = int(round(end_sec * self._sample_rate))
samples = self._samples[start_sample:end_sample]
return type(self)(samples, sample_rate=self._sample_rate)
def random_subsegment(self, subsegment_length, rng=None):
"""Return a random subsegment of a specified length in seconds.
:param subsegment_length: Subsegment length in seconds.
:type subsegment_length: float
:param rng: Random number generator state
:type rng: random.Random
:return: New AudioSegment containing random subsegment
of original segment
:rtype: AudioSegment
:raises ValueError: If the length of subsegment greater than origineal
segemnt.
"""
rng = random.Random() if rng is None else rng
if subsegment_length > self.duration:
raise ValueError("Length of subsegment must not be greater "
"than original segment.")
start_time = rng.uniform(0.0, self.duration - subsegment_length)
return self.subsegment(start_time, start_time + subsegment_length)
def convolve(self, impulse_segment, allow_resample=False):
"""Convolve this audio segment with the given filter.
Note that this is an in-place transformation.
:param impulse_segment: Impulse response segments.
:type impulse_segment: AudioSegment
:param allow_resample: indicates whether resampling is allowed when
the impulse_segment has a different sample
rate from this signal.
:type allow_resample: boolean
:raises ValueError: If the sample rate is not match between two
audio segments and resample is not allowed.
"""
if allow_resample and self.sample_rate != impulse_segment.sample_rate:
impulse_segment = impulse_segment.resample(self.sample_rate)
if self.sample_rate != impulse_segment.sample_rate:
raise ValueError("Impulse segment's sample rate (%d Hz) is not"
"equal to base signal sample rate (%d Hz)." %
(impulse_segment.sample_rate, self.sample_rate))
samples = signal.fftconvolve(self.samples, impulse_segment.samples,
"full")
self._samples = samples
def convolve_and_normalize(self, impulse_segment, allow_resample=False):
"""Convolve and normalize the resulting audio segment so that it
has the same average power as the input signal.
:param impulse_segment: Impulse response segments.
:type impulse_segment: AudioSegment
:param allow_resample: indicates whether resampling is allowed when
the impulse_segment has a different sample rate from this signal.
:type allow_resample: boolean
"""
target_db = self.rms_db
self.convolve(impulse_segment, allow_resample=allow_resample)
self.normalize(target_db)
def add_noise(self,
noise,
snr_dB,
allow_downsampling=False,
max_gain_db=300.0,
rng=None):
"""Adds the given noise segment at a specific signal-to-noise ratio.
If the noise segment is longer than this segment, a random subsegment
of matching length is sampled from it and used instead.
:param noise: Noise signal to add.
:type noise: AudioSegment
:param snr_dB: Signal-to-Noise Ratio, in decibels.
:type snr_dB: float
:param allow_downsampling: whether to allow the noise signal to be downsampled
to match the base signal sample rate.
:type allow_downsampling: boolean
:param max_gain_db: Maximum amount of gain to apply to noise signal before
adding it in. This is to prevent attempting to apply infinite
gain to a zero signal.
:type max_gain_db: float
:param rng: Random number generator state.
:type rng: random.Random
:raises ValueError: If the sample rate does not match between the two audio segments
and resample is not allowed, or if the duration of noise segments
is shorter than original audio segments.
"""
rng = random.Random() if rng is None else rng
if allow_downsampling and noise.sample_rate > self.sample_rate:
noise = noise.resample(self.sample_rate)
if noise.sample_rate != self.sample_rate:
raise ValueError("Noise sample rate (%d Hz) is not equal to "
"base signal sample rate (%d Hz)." %
(noise.sample_rate, self.sample_rate))
if noise.duration < self.duration:
raise ValueError("Noise signal (%f sec) must be at "
"least as long as base signal (%f sec)." %
(noise.duration, self.duration))
noise_gain_db = self.rms_db - noise.rms_db - snr_dB
noise_gain_db = min(max_gain_db, noise_gain_db)
noise_subsegment = noise.random_subsegment(self.duration, rng=rng)
output = self + self.tranform_noise(noise_subsegment, noise_gain_db)
self._samples = output._samples
self._sample_rate = output._sample_rate
def tranform_noise(self, noise_subsegment, noise_gain_db):
""" tranform noise file
"""
return type(self)(noise_subsegment._samples * (10.**(
noise_gain_db / 20.)), noise_subsegment._sample_rate)
@property
def samples(self):
"""Return audio samples.
:return: Audio samples.
:rtype: ndarray
"""
return self._samples.copy()
@property
def sample_rate(self):
"""Return audio sample rate.
:return: Audio sample rate.
:rtype: int
"""
return self._sample_rate
@property
def num_samples(self):
"""Return number of samples.
:return: Number of samples.
:rtype: int
"""
return self._samples.shape[0]
@property
def duration(self):
"""Return audio duration.
:return: Audio duration in seconds.
:rtype: float
"""
return self._samples.shape[0] / float(self._sample_rate)
@property
def rms_db(self):
"""Return root mean square energy of the audio in decibels.
:return: Root mean square energy in decibels.
:rtype: float
"""
# square root => multiply by 10 instead of 20 for dBs
mean_square = np.mean(self._samples**2)
return 10 * np.log10(mean_square)
def _convert_samples_to_float32(self, samples):
"""Convert sample type to float32.
Audio sample type is usually integer or float-point.
Integers will be scaled to [-1, 1] in float32.
"""
float32_samples = samples.astype('float32')
if samples.dtype in np.sctypes['int']:
bits = np.iinfo(samples.dtype).bits
float32_samples *= (1. / 2**(bits - 1))
elif samples.dtype in np.sctypes['float']:
pass
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return float32_samples
def _convert_samples_from_float32(self, samples, dtype):
"""Convert sample type from float32 to dtype.
Audio sample type is usually integer or float-point. For integer
type, float32 will be rescaled from [-1, 1] to the maximum range
supported by the integer type.
This is for writing a audio file.
"""
dtype = np.dtype(dtype)
output_samples = samples.copy()
if dtype in np.sctypes['int']:
bits = np.iinfo(dtype).bits
output_samples *= (2**(bits - 1) / 1.)
min_val = np.iinfo(dtype).min
max_val = np.iinfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
elif samples.dtype in np.sctypes['float']:
min_val = np.finfo(dtype).min
max_val = np.finfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return output_samples.astype(dtype)