You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
4.0 KiB
111 lines
4.0 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import re
|
|
from typing import List
|
|
|
|
from .char_convert import tranditional_to_simplified
|
|
from .chronology import RE_DATE
|
|
from .chronology import RE_DATE2
|
|
from .chronology import RE_TIME
|
|
from .chronology import RE_TIME_RANGE
|
|
from .chronology import replace_date
|
|
from .chronology import replace_date2
|
|
from .chronology import replace_time
|
|
from .constants import F2H_ASCII_LETTERS
|
|
from .constants import F2H_DIGITS
|
|
from .constants import F2H_SPACE
|
|
from .num import RE_DECIMAL_NUM
|
|
from .num import RE_DEFAULT_NUM
|
|
from .num import RE_FRAC
|
|
from .num import RE_INTEGER
|
|
from .num import RE_NUMBER
|
|
from .num import RE_PERCENTAGE
|
|
from .num import RE_POSITIVE_QUANTIFIERS
|
|
from .num import RE_RANGE
|
|
from .num import replace_default_num
|
|
from .num import replace_frac
|
|
from .num import replace_negative_num
|
|
from .num import replace_number
|
|
from .num import replace_percentage
|
|
from .num import replace_positive_quantifier
|
|
from .num import replace_range
|
|
from .phonecode import RE_MOBILE_PHONE
|
|
from .phonecode import RE_NATIONAL_UNIFORM_NUMBER
|
|
from .phonecode import RE_TELEPHONE
|
|
from .phonecode import replace_mobile
|
|
from .phonecode import replace_phone
|
|
from .quantifier import RE_TEMPERATURE
|
|
from .quantifier import replace_temperature
|
|
|
|
|
|
class TextNormalizer():
|
|
def __init__(self):
|
|
self.SENTENCE_SPLITOR = re.compile(r'([:,;。?!,;?!][”’]?)')
|
|
|
|
def _split(self, text: str) -> List[str]:
|
|
"""Split long text into sentences with sentence-splitting punctuations.
|
|
Parameters
|
|
----------
|
|
text : str
|
|
The input text.
|
|
Returns
|
|
-------
|
|
List[str]
|
|
Sentences.
|
|
"""
|
|
# Only for pure Chinese here
|
|
text = text.replace(" ", "")
|
|
text = self.SENTENCE_SPLITOR.sub(r'\1\n', text)
|
|
text = text.strip()
|
|
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
|
|
return sentences
|
|
|
|
def normalize_sentence(self, sentence: str) -> str:
|
|
# basic character conversions
|
|
sentence = tranditional_to_simplified(sentence)
|
|
sentence = sentence.translate(F2H_ASCII_LETTERS).translate(
|
|
F2H_DIGITS).translate(F2H_SPACE)
|
|
|
|
# number related NSW verbalization
|
|
sentence = RE_DATE.sub(replace_date, sentence)
|
|
sentence = RE_DATE2.sub(replace_date2, sentence)
|
|
|
|
# range first
|
|
sentence = RE_TIME_RANGE.sub(replace_time, sentence)
|
|
sentence = RE_TIME.sub(replace_time, sentence)
|
|
|
|
sentence = RE_TEMPERATURE.sub(replace_temperature, sentence)
|
|
sentence = RE_FRAC.sub(replace_frac, sentence)
|
|
sentence = RE_PERCENTAGE.sub(replace_percentage, sentence)
|
|
sentence = RE_MOBILE_PHONE.sub(replace_mobile, sentence)
|
|
|
|
sentence = RE_TELEPHONE.sub(replace_phone, sentence)
|
|
sentence = RE_NATIONAL_UNIFORM_NUMBER.sub(replace_phone, sentence)
|
|
|
|
sentence = RE_RANGE.sub(replace_range, sentence)
|
|
sentence = RE_INTEGER.sub(replace_negative_num, sentence)
|
|
sentence = RE_DECIMAL_NUM.sub(replace_number, sentence)
|
|
sentence = RE_POSITIVE_QUANTIFIERS.sub(replace_positive_quantifier,
|
|
sentence)
|
|
sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence)
|
|
sentence = RE_NUMBER.sub(replace_number, sentence)
|
|
|
|
return sentence
|
|
|
|
def normalize(self, text: str) -> List[str]:
|
|
sentences = self._split(text)
|
|
|
|
sentences = [self.normalize_sentence(sent) for sent in sentences]
|
|
return sentences
|