You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/cli/s2t/infer.py

334 lines
13 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
from typing import List
from typing import Optional
from typing import Union
import soundfile
import paddle
from paddlespeech.cli.executor import BaseExecutor
from paddlespeech.cli.utils import cli_register
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.cli.utils import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.s2t.exps.u2.config import get_cfg_defaults
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.io.collator import SpeechCollator
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ['S2TExecutor']
pretrained_models = {
"wenetspeech_zh": {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz',
'md5':
'54e7a558a6e020c2f5fb224874943f97',
'cfg_path':
'conf/conformer.yaml',
'ckpt_path':
'exp/conformer/checkpoints/wenetspeech',
}
}
model_alias = {
"ds2_offline": "paddlespeech.s2t.models.ds2:DeepSpeech2Model",
"ds2_online": "paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
"conformer": "paddlespeech.s2t.models.u2:U2Model",
"transformer": "paddlespeech.s2t.models.u2:U2Model",
"wenetspeech": "paddlespeech.s2t.models.u2:U2Model",
}
pretrain_model_alias = {
"ds2_online_zn": [
"https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/aishell_ds2_online_cer8.00_release.tar.gz",
"", ""
],
"ds2_offline_zn": [
"https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/ds2.model.tar.gz",
"", ""
],
"transformer_zn": [
"https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/transformer.model.tar.gz",
"", ""
],
"conformer_zn": [
"https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz",
"", ""
],
"wenetspeech_zn": [
"https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz",
"conf/conformer.yaml", "exp/conformer/checkpoints/wenetspeech"
],
}
@cli_register(
name='paddlespeech.s2t', description='Speech to text infer command.')
class S2TExecutor(BaseExecutor):
def __init__(self):
super(S2TExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech.s2t', add_help=True)
self.parser.add_argument(
'--model',
type=str,
default='wenetspeech',
help='Choose model type of asr task.')
self.parser.add_argument(
'--lang', type=str, default='zh', help='Choose model language.')
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of s2t task. Use deault config when it is None.')
self.parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help='Checkpoint file of model.')
self.parser.add_argument(
'--input',
type=str,
default="../Downloads/asr-demo-1.wav",
help='Audio file to recognize.')
self.parser.add_argument(
'--device',
type=str,
default='cpu',
help='Choose device to execute model inference.')
def _get_pretrained_path(self, tag: str) -> os.PathLike:
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
tag)
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
res_path)
decompressed_path = os.path.abspath(decompressed_path)
logger.info(
'Use pretrained model stored in: {}'.format(decompressed_path))
return decompressed_path
def _init_from_path(self,
model_type: str='wenetspeech',
lang: str='zh',
cfg_path: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None):
"""
Init model and other resources from a specific path.
"""
if cfg_path is None or ckpt_path is None:
tag = model_type + '_' + lang
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
self.cfg_path = os.path.join(res_path,
pretrained_models[tag]['cfg_path'])
self.ckpt_path = os.path.join(res_path,
pretrained_models[tag]['ckpt_path'])
logger.info(res_path)
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.ckpt_path = os.path.abspath(ckpt_path)
res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
os.chdir(res_path)
#Init body.
parser_args = self.parser_args
paddle.set_device(parser_args.device)
self.config = get_cfg_defaults()
self.config.merge_from_file(self.cfg_path)
self.config.decoding.decoding_method = "attention_rescoring"
#self.config.freeze()
model_conf = self.config.model
logger.info(model_conf)
with UpdateConfig(model_conf):
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
self.config.collator.vocab_filepath = os.path.join(
res_path, self.config.collator.vocab_filepath)
self.config.collator.vocab_filepath = os.path.join(
res_path, self.config.collator.cmvn_path)
self.collate_fn_test = SpeechCollator.from_config(self.config)
model_conf.feat_size = self.collate_fn_test.feature_size
model_conf.dict_size = self.text_feature.vocab_size
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
self.config.collator.vocab_filepath = os.path.join(
res_path, self.config.collator.vocab_filepath)
self.text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab_filepath=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
model_conf.input_dim = self.config.collator.feat_dim
model_conf.output_dim = self.text_feature.vocab_size
else:
raise Exception("wrong type")
model_class = dynamic_import(parser_args.model, model_alias)
model = model_class.from_config(model_conf)
self.model = model
self.model.eval()
# load model
params_path = self.ckpt_path + ".pdparams"
model_dict = paddle.load(params_path)
self.model.set_state_dict(model_dict)
def preprocess(self, input: Union[str, os.PathLike]):
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(t2s), a file(s2t, cls) or a streaming(not supported yet).
"""
parser_args = self.parser_args
config = self.config
audio_file = input
#print("audio_file", audio_file)
logger.info("audio_file"+ audio_file)
self.sr = config.collator.target_sample_rate
# Get the object for feature extraction
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
audio, _ = collate_fn_test.process_utterance(
audio_file=audio_file, transcript=" ")
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
self.audio_len = paddle.to_tensor(audio_len)
self.audio = paddle.unsqueeze(audio, axis=0)
self.vocab_list = collate_fn_test.vocab_list
logger.info(f"audio feat shape: {self.audio.shape}")
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
logger.info("get the preprocess conf")
preprocess_conf = os.path.join(
os.path.dirname(os.path.abspath(self.cfg_path)),
"preprocess.yaml")
cmvn_path: data / mean_std.json
logger.info(preprocess_conf)
preprocess_args = {"train": False}
preprocessing = Transformation(preprocess_conf)
audio, sample_rate = soundfile.read(
audio_file, dtype="int16", always_2d=True)
if sample_rate != self.sr:
logger.error(
f"sample rate error: {sample_rate}, need {self.sr} ")
sys.exit(-1)
audio = audio[:, 0]
logger.info(f"audio shape: {audio.shape}")
# fbank
audio = preprocessing(audio, **preprocess_args)
self.audio_len = paddle.to_tensor(audio.shape[0])
self.audio = paddle.to_tensor(
audio, dtype='float32').unsqueeze(axis=0)
logger.info(f"audio feat shape: {self.audio.shape}")
else:
raise Exception("wrong type")
@paddle.no_grad()
def infer(self):
"""
Model inference and result stored in self.output.
"""
cfg = self.config.decoding
parser_args = self.parser_args
audio = self.audio
audio_len = self.audio_len
if parser_args.model == "ds2_online" or parser_args.model == "ds2_offline":
vocab_list = self.vocab_list
result_transcripts = self.model.decode(
audio,
audio_len,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
self.result_transcripts = result_transcripts[0]
elif parser_args.model == "conformer" or parser_args.model == "transformer" or parser_args.model == "wenetspeech":
text_feature = self.text_feature
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
self.result_transcripts = result_transcripts[0][0]
else:
raise Exception("invalid model name")
pass
def postprocess(self) -> Union[str, os.PathLike]:
"""
Output postprocess and return human-readable results such as texts and audio files.
"""
return self.result_transcripts
def execute(self, argv: List[str]) -> bool:
self.parser_args = self.parser.parse_args(argv)
model = self.parser_args.model
lang = self.parser_args.lang
config = self.parser_args.config
ckpt_path = self.parser_args.ckpt_path
audio_file = os.path.abspath(self.parser_args.input)
device = self.parser_args.device
try:
self._init_from_path(model, lang, config, ckpt_path)
self.preprocess(audio_file)
self.infer()
res = self.postprocess() # Retrieve result of s2t.
logger.info(res)
return True
except Exception as e:
print(e)
return False
if __name__ == "__main__":
exe = S2TExecutor()
exe.execute('')