You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/initializer.py

173 lines
5.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.fluid import framework
from paddle.fluid import unique_name
from paddle.fluid.core import VarDesc
from paddle.fluid.initializer import MSRAInitializer
__all__ = ['KaimingUniform']
class KaimingUniform(MSRAInitializer):
r"""Implements the Kaiming Uniform initializer
This class implements the weight initialization from the paper
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
robust initialization method that particularly considers the rectifier
nonlinearities.
In case of Uniform distribution, the range is [-x, x], where
.. math::
x = \sqrt{\frac{1.0}{fan\_in}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
.. math::
\sqrt{\\frac{2.0}{fan\_in}}
Args:
fan_in (float32|None): fan_in for Kaiming uniform Initializer. If None, it is\
inferred from the variable. default is None.
Note:
It is recommended to set fan_in to None for most cases.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
linear = nn.Linear(2,
4,
weight_attr=nn.initializer.KaimingUniform())
data = paddle.rand([30, 10, 2], dtype='float32')
res = linear(data)
"""
def __init__(self, fan_in=None):
super(KaimingUniform, self).__init__(
uniform=True, fan_in=fan_in, seed=0)
def __call__(self, var, block=None):
"""Initialize the input tensor with MSRA initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
f_in, f_out = self._compute_fans(var)
# If fan_in is passed, use it
fan_in = f_in if self._fan_in is None else self._fan_in
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(
".".join(['masra_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if self._uniform:
limit = np.sqrt(1.0 / float(fan_in))
op = block.append_op(
type="uniform_random",
inputs={},
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"min": -limit,
"max": limit,
"seed": self._seed
},
stop_gradient=True)
else:
std = np.sqrt(2.0 / float(fan_in))
op = block.append_op(
type="gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"mean": 0.0,
"std": std,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class DefaultInitializerContext(object):
"""
egs:
with DefaultInitializerContext("kaiming_uniform"):
code for setup_model
"""
def __init__(self, init_type=None):
self.init_type = init_type
def __enter__(self):
if self.init_type is None:
return
else:
from paddlespeech.s2t.modules import align
align.global_init_type = self.init_type
return
def __exit__(self, exc_type, exc_val, exc_tb):
from paddlespeech.s2t.modules import align
align.global_init_type = None