You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/wenetspeech/asr1/local/data.sh

130 lines
3.4 KiB

#!/bin/bash
# Copyright 2021 Mobvoi Inc(Author: Di Wu, Binbin Zhang)
# NPU, ASLP Group (Author: Qijie Shao)
stage=-1
stop_stage=100
# Use your own data path. You need to download the WenetSpeech dataset by yourself.
wenetspeech_data_dir=./wenetspeech
# Make sure you have 1.2T for ${shards_dir}
shards_dir=./wenetspeech_shards
#wenetspeech training set
set=L
train_set=train_`echo $set | tr 'A-Z' 'a-z'`
dev_set=dev
test_sets="test_net test_meeting"
cmvn=true
cmvn_sampling_divisor=20 # 20 means 5% of the training data to estimate cmvn
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
set -u
set -o pipefail
mkdir -p data
TARGET_DIR=${MAIN_ROOT}/examples/dataset
mkdir -p ${TARGET_DIR}
if [ ${stage} -le -2 ] && [ ${stop_stage} -ge -2 ]; then
# download data
echo "Please follow https://github.com/wenet-e2e/WenetSpeech to download the data."
exit 0;
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "Data preparation"
local/wenetspeech_data_prep.sh \
--train-subset $set \
$wenetspeech_data_dir \
data || exit 1;
fi
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
# generate manifests
python3 ${TARGET_DIR}/aishell/aishell.py \
--manifest_prefix="data/manifest" \
--target_dir="${TARGET_DIR}/aishell"
if [ $? -ne 0 ]; then
echo "Prepare Aishell failed. Terminated."
exit 1
fi
for dataset in train dev test; do
mv data/manifest.${dataset} data/manifest.${dataset}.raw
done
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# compute mean and stddev for normalizer
if $cmvn; then
full_size=`cat data/${train_set}/wav.scp | wc -l`
sampling_size=$((full_size / cmvn_sampling_divisor))
shuf -n $sampling_size data/$train_set/wav.scp \
> data/$train_set/wav.scp.sampled
num_workers=$(nproc)
python3 ${MAIN_ROOT}/utils/compute_mean_std.py \
--manifest_path="data/manifest.train.raw" \
--spectrum_type="fbank" \
--feat_dim=80 \
--delta_delta=false \
--stride_ms=10 \
--window_ms=25 \
--sample_rate=16000 \
--use_dB_normalization=False \
--num_samples=-1 \
--num_workers=${num_workers} \
--output_path="data/mean_std.json"
if [ $? -ne 0 ]; then
echo "Compute mean and stddev failed. Terminated."
exit 1
fi
fi
fi
dict=data/dict/lang_char.txt
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# download data, generate manifests
# build vocabulary
python3 ${MAIN_ROOT}/utils/build_vocab.py \
--unit_type="char" \
--count_threshold=0 \
--vocab_path="data/vocab.txt" \
--manifest_paths "data/manifest.train.raw"
if [ $? -ne 0 ]; then
echo "Build vocabulary failed. Terminated."
exit 1
fi
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# format manifest with tokenids, vocab size
for dataset in train dev test; do
{
python3 ${MAIN_ROOT}/utils/format_data.py \
--cmvn_path "data/mean_std.json" \
--unit_type "char" \
--vocab_path="data/vocab.txt" \
--manifest_path="data/manifest.${dataset}.raw" \
--output_path="data/manifest.${dataset}"
if [ $? -ne 0 ]; then
echo "Formt mnaifest failed. Terminated."
exit 1
fi
} &
done
wait
fi
echo "Aishell data preparation done."
exit 0