|
|
# MIT License, Copyright (c) 2023-Present, Descript.
|
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Modified from audiotools(https://github.com/descriptinc/audiotools/blob/master/audiotools/data/datasets.py)
|
|
|
from pathlib import Path
|
|
|
from typing import Callable
|
|
|
from typing import Dict
|
|
|
from typing import List
|
|
|
from typing import Union
|
|
|
|
|
|
import numpy as np
|
|
|
import paddle
|
|
|
from paddle.io import DistributedBatchSampler
|
|
|
from paddle.io import SequenceSampler
|
|
|
|
|
|
from ..core import AudioSignal
|
|
|
from ..core import util
|
|
|
|
|
|
__all__ = [
|
|
|
"AudioLoader", "AudioDataset", "ConcatDataset",
|
|
|
"ResumableDistributedSampler", "ResumableSequentialSampler"
|
|
|
]
|
|
|
|
|
|
|
|
|
class AudioLoader:
|
|
|
"""Loads audio endlessly from a list of audio sources
|
|
|
containing paths to audio files. Audio sources can be
|
|
|
folders full of audio files (which are found via file
|
|
|
extension) or by providing a CSV file which contains paths
|
|
|
to audio files.
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
sources : List[str], optional
|
|
|
Sources containing folders, or CSVs with
|
|
|
paths to audio files, by default None
|
|
|
weights : List[float], optional
|
|
|
Weights to sample audio files from each source, by default None
|
|
|
relative_path : str, optional
|
|
|
Path audio should be loaded relative to, by default ""
|
|
|
transform : Callable, optional
|
|
|
Transform to instantiate alongside audio sample,
|
|
|
by default None
|
|
|
ext : List[str]
|
|
|
List of extensions to find audio within each source by. Can
|
|
|
also be a file name (e.g. "vocals.wav"). by default
|
|
|
``['.wav', '.flac', '.mp3', '.mp4']``.
|
|
|
shuffle: bool
|
|
|
Whether to shuffle the files within the dataloader. Defaults to True.
|
|
|
shuffle_state: int
|
|
|
State to use to seed the shuffle of the files.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
sources: List[str]=None,
|
|
|
weights: List[float]=None,
|
|
|
transform: Callable=None,
|
|
|
relative_path: str="",
|
|
|
ext: List[str]=util.AUDIO_EXTENSIONS,
|
|
|
shuffle: bool=True,
|
|
|
shuffle_state: int=0, ):
|
|
|
self.audio_lists = util.read_sources(
|
|
|
sources, relative_path=relative_path, ext=ext)
|
|
|
|
|
|
self.audio_indices = [(src_idx, item_idx)
|
|
|
for src_idx, src in enumerate(self.audio_lists)
|
|
|
for item_idx in range(len(src))]
|
|
|
if shuffle:
|
|
|
state = util.random_state(shuffle_state)
|
|
|
state.shuffle(self.audio_indices)
|
|
|
|
|
|
self.sources = sources
|
|
|
self.weights = weights
|
|
|
self.transform = transform
|
|
|
|
|
|
def __call__(
|
|
|
self,
|
|
|
state,
|
|
|
sample_rate: int,
|
|
|
duration: float,
|
|
|
loudness_cutoff: float=-40,
|
|
|
num_channels: int=1,
|
|
|
offset: float=None,
|
|
|
source_idx: int=None,
|
|
|
item_idx: int=None,
|
|
|
global_idx: int=None, ):
|
|
|
if source_idx is not None and item_idx is not None:
|
|
|
try:
|
|
|
audio_info = self.audio_lists[source_idx][item_idx]
|
|
|
except:
|
|
|
audio_info = {"path": "none"}
|
|
|
elif global_idx is not None:
|
|
|
source_idx, item_idx = self.audio_indices[global_idx %
|
|
|
len(self.audio_indices)]
|
|
|
audio_info = self.audio_lists[source_idx][item_idx]
|
|
|
else:
|
|
|
audio_info, source_idx, item_idx = util.choose_from_list_of_lists(
|
|
|
state, self.audio_lists, p=self.weights)
|
|
|
|
|
|
path = audio_info["path"]
|
|
|
signal = AudioSignal.zeros(duration, sample_rate, num_channels)
|
|
|
|
|
|
if path != "none":
|
|
|
if offset is None:
|
|
|
signal = AudioSignal.salient_excerpt(
|
|
|
path,
|
|
|
duration=duration,
|
|
|
state=state,
|
|
|
loudness_cutoff=loudness_cutoff, )
|
|
|
else:
|
|
|
signal = AudioSignal(
|
|
|
path,
|
|
|
offset=offset,
|
|
|
duration=duration, )
|
|
|
|
|
|
if num_channels == 1:
|
|
|
signal = signal.to_mono()
|
|
|
signal = signal.resample(sample_rate)
|
|
|
|
|
|
if signal.duration < duration:
|
|
|
signal = signal.zero_pad_to(int(duration * sample_rate))
|
|
|
|
|
|
for k, v in audio_info.items():
|
|
|
signal.metadata[k] = v
|
|
|
|
|
|
item = {
|
|
|
"signal": signal,
|
|
|
"source_idx": source_idx,
|
|
|
"item_idx": item_idx,
|
|
|
"source": str(self.sources[source_idx]),
|
|
|
"path": str(path),
|
|
|
}
|
|
|
if self.transform is not None:
|
|
|
item["transform_args"] = self.transform.instantiate(
|
|
|
state, signal=signal)
|
|
|
return item
|
|
|
|
|
|
|
|
|
def default_matcher(x, y):
|
|
|
return Path(x).parent == Path(y).parent
|
|
|
|
|
|
|
|
|
def align_lists(lists, matcher: Callable=default_matcher):
|
|
|
longest_list = lists[np.argmax([len(l) for l in lists])]
|
|
|
for i, x in enumerate(longest_list):
|
|
|
for l in lists:
|
|
|
if i >= len(l):
|
|
|
l.append({"path": "none"})
|
|
|
elif not matcher(l[i]["path"], x["path"]):
|
|
|
l.insert(i, {"path": "none"})
|
|
|
return lists
|
|
|
|
|
|
|
|
|
class AudioDataset:
|
|
|
"""Loads audio from multiple loaders (with associated transforms)
|
|
|
for a specified number of samples. Excerpts are drawn randomly
|
|
|
of the specified duration, above a specified loudness threshold
|
|
|
and are resampled on the fly to the desired sample rate
|
|
|
(if it is different from the audio source sample rate).
|
|
|
|
|
|
This takes either a single AudioLoader object,
|
|
|
a dictionary of AudioLoader objects, or a dictionary of AudioLoader
|
|
|
objects. Each AudioLoader is called by the dataset, and the
|
|
|
result is placed in the output dictionary. A transform can also be
|
|
|
specified for the entire dataset, rather than for each specific
|
|
|
loader. This transform can be applied to the output of all the
|
|
|
loaders if desired.
|
|
|
|
|
|
AudioLoader objects can be specified as aligned, which means the
|
|
|
loaders correspond to multitrack audio (e.g. a vocals, bass,
|
|
|
drums, and other loader for multitrack music mixtures).
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
loaders : Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]]
|
|
|
AudioLoaders to sample audio from.
|
|
|
sample_rate : int
|
|
|
Desired sample rate.
|
|
|
n_examples : int, optional
|
|
|
Number of examples (length of dataset), by default 1000
|
|
|
duration : float, optional
|
|
|
Duration of audio samples, by default 0.5
|
|
|
loudness_cutoff : float, optional
|
|
|
Loudness cutoff threshold for audio samples, by default -40
|
|
|
num_channels : int, optional
|
|
|
Number of channels in output audio, by default 1
|
|
|
transform : Callable, optional
|
|
|
Transform to instantiate alongside each dataset item, by default None
|
|
|
aligned : bool, optional
|
|
|
Whether the loaders should be sampled in an aligned manner (e.g. same
|
|
|
offset, duration, and matched file name), by default False
|
|
|
shuffle_loaders : bool, optional
|
|
|
Whether to shuffle the loaders before sampling from them, by default False
|
|
|
matcher : Callable
|
|
|
How to match files from adjacent audio lists (e.g. for a multitrack audio loader),
|
|
|
by default uses the parent directory of each file.
|
|
|
without_replacement : bool
|
|
|
Whether to choose files with or without replacement, by default True.
|
|
|
|
|
|
|
|
|
Examples
|
|
|
--------
|
|
|
>>> from audio.audiotools.data.datasets import AudioLoader
|
|
|
>>> from audio.audiotools.data.datasets import AudioDataset
|
|
|
>>> from audio.audiotools import transforms as tfm
|
|
|
>>> import numpy as np
|
|
|
>>>
|
|
|
>>> loaders = [
|
|
|
>>> AudioLoader(
|
|
|
>>> sources=[f"tests/audiotools/audio/spk"],
|
|
|
>>> transform=tfm.Equalizer(),
|
|
|
>>> ext=["wav"],
|
|
|
>>> )
|
|
|
>>> for i in range(5)
|
|
|
>>> ]
|
|
|
>>>
|
|
|
>>> dataset = AudioDataset(
|
|
|
>>> loaders = loaders,
|
|
|
>>> sample_rate = 44100,
|
|
|
>>> duration = 1.0,
|
|
|
>>> transform = tfm.RescaleAudio(),
|
|
|
>>> )
|
|
|
>>>
|
|
|
>>> item = dataset[np.random.randint(len(dataset))]
|
|
|
>>>
|
|
|
>>> for i in range(len(loaders)):
|
|
|
>>> item[i]["signal"] = loaders[i].transform(
|
|
|
>>> item[i]["signal"], **item[i]["transform_args"]
|
|
|
>>> )
|
|
|
>>> item[i]["signal"].widget(i)
|
|
|
>>>
|
|
|
>>> mix = sum([item[i]["signal"] for i in range(len(loaders))])
|
|
|
>>> mix = dataset.transform(mix, **item["transform_args"])
|
|
|
>>> mix.widget("mix")
|
|
|
|
|
|
Below is an example of how one could load MUSDB multitrack data:
|
|
|
|
|
|
>>> from audio import audiotools as at
|
|
|
>>> from pathlib import Path
|
|
|
>>> from audio.audiotools import transforms as tfm
|
|
|
>>> import numpy as np
|
|
|
>>> import torch
|
|
|
>>>
|
|
|
>>> def build_dataset(
|
|
|
>>> sample_rate: int = 44100,
|
|
|
>>> duration: float = 5.0,
|
|
|
>>> musdb_path: str = "~/.data/musdb/",
|
|
|
>>> ):
|
|
|
>>> musdb_path = Path(musdb_path).expanduser()
|
|
|
>>> loaders = {
|
|
|
>>> src: at.datasets.AudioLoader(
|
|
|
>>> sources=[musdb_path],
|
|
|
>>> transform=tfm.Compose(
|
|
|
>>> tfm.VolumeNorm(("uniform", -20, -10)),
|
|
|
>>> tfm.Silence(prob=0.1),
|
|
|
>>> ),
|
|
|
>>> ext=[f"{src}.wav"],
|
|
|
>>> )
|
|
|
>>> for src in ["vocals", "bass", "drums", "other"]
|
|
|
>>> }
|
|
|
>>>
|
|
|
>>> dataset = at.datasets.AudioDataset(
|
|
|
>>> loaders=loaders,
|
|
|
>>> sample_rate=sample_rate,
|
|
|
>>> duration=duration,
|
|
|
>>> num_channels=1,
|
|
|
>>> aligned=True,
|
|
|
>>> transform=tfm.RescaleAudio(),
|
|
|
>>> shuffle_loaders=True,
|
|
|
>>> )
|
|
|
>>> return dataset, list(loaders.keys())
|
|
|
>>>
|
|
|
>>> train_data, sources = build_dataset()
|
|
|
>>> dataloader = torch.utils.data.DataLoader(
|
|
|
>>> train_data,
|
|
|
>>> batch_size=16,
|
|
|
>>> num_workers=0,
|
|
|
>>> collate_fn=train_data.collate,
|
|
|
>>> )
|
|
|
>>> batch = next(iter(dataloader))
|
|
|
>>>
|
|
|
>>> for k in sources:
|
|
|
>>> src = batch[k]
|
|
|
>>> src["transformed"] = train_data.loaders[k].transform(
|
|
|
>>> src["signal"].clone(), **src["transform_args"]
|
|
|
>>> )
|
|
|
>>>
|
|
|
>>> mixture = sum(batch[k]["transformed"] for k in sources)
|
|
|
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
|
|
|
>>>
|
|
|
>>> # Say a model takes the mix and gives back (n_batch, n_src, n_time).
|
|
|
>>> # Construct the targets:
|
|
|
>>> targets = at.AudioSignal.batch([batch[k]["transformed"] for k in sources], dim=1)
|
|
|
|
|
|
Similarly, here's example code for loading Slakh data:
|
|
|
|
|
|
>>> from audio import audiotools as at
|
|
|
>>> from pathlib import Path
|
|
|
>>> from audio.audiotools import transforms as tfm
|
|
|
>>> import numpy as np
|
|
|
>>> import torch
|
|
|
>>> import glob
|
|
|
>>>
|
|
|
>>> def build_dataset(
|
|
|
>>> sample_rate: int = 16000,
|
|
|
>>> duration: float = 10.0,
|
|
|
>>> slakh_path: str = "~/.data/slakh/",
|
|
|
>>> ):
|
|
|
>>> slakh_path = Path(slakh_path).expanduser()
|
|
|
>>>
|
|
|
>>> # Find the max number of sources in Slakh
|
|
|
>>> src_names = [x.name for x in list(slakh_path.glob("**/*.wav")) if "S" in str(x.name)]
|
|
|
>>> n_sources = len(list(set(src_names)))
|
|
|
>>>
|
|
|
>>> loaders = {
|
|
|
>>> f"S{i:02d}": at.datasets.AudioLoader(
|
|
|
>>> sources=[slakh_path],
|
|
|
>>> transform=tfm.Compose(
|
|
|
>>> tfm.VolumeNorm(("uniform", -20, -10)),
|
|
|
>>> tfm.Silence(prob=0.1),
|
|
|
>>> ),
|
|
|
>>> ext=[f"S{i:02d}.wav"],
|
|
|
>>> )
|
|
|
>>> for i in range(n_sources)
|
|
|
>>> }
|
|
|
>>> dataset = at.datasets.AudioDataset(
|
|
|
>>> loaders=loaders,
|
|
|
>>> sample_rate=sample_rate,
|
|
|
>>> duration=duration,
|
|
|
>>> num_channels=1,
|
|
|
>>> aligned=True,
|
|
|
>>> transform=tfm.RescaleAudio(),
|
|
|
>>> shuffle_loaders=False,
|
|
|
>>> )
|
|
|
>>>
|
|
|
>>> return dataset, list(loaders.keys())
|
|
|
>>>
|
|
|
>>> train_data, sources = build_dataset()
|
|
|
>>> dataloader = torch.utils.data.DataLoader(
|
|
|
>>> train_data,
|
|
|
>>> batch_size=16,
|
|
|
>>> num_workers=0,
|
|
|
>>> collate_fn=train_data.collate,
|
|
|
>>> )
|
|
|
>>> batch = next(iter(dataloader))
|
|
|
>>>
|
|
|
>>> for k in sources:
|
|
|
>>> src = batch[k]
|
|
|
>>> src["transformed"] = train_data.loaders[k].transform(
|
|
|
>>> src["signal"].clone(), **src["transform_args"]
|
|
|
>>> )
|
|
|
>>>
|
|
|
>>> mixture = sum(batch[k]["transformed"] for k in sources)
|
|
|
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
loaders: Union[AudioLoader, List[AudioLoader], Dict[str,
|
|
|
AudioLoader]],
|
|
|
sample_rate: int,
|
|
|
n_examples: int=1000,
|
|
|
duration: float=0.5,
|
|
|
offset: float=None,
|
|
|
loudness_cutoff: float=-40,
|
|
|
num_channels: int=1,
|
|
|
transform: Callable=None,
|
|
|
aligned: bool=False,
|
|
|
shuffle_loaders: bool=False,
|
|
|
matcher: Callable=default_matcher,
|
|
|
without_replacement: bool=True, ):
|
|
|
# Internally we convert loaders to a dictionary
|
|
|
if isinstance(loaders, list):
|
|
|
loaders = {i: l for i, l in enumerate(loaders)}
|
|
|
elif isinstance(loaders, AudioLoader):
|
|
|
loaders = {0: loaders}
|
|
|
|
|
|
self.loaders = loaders
|
|
|
self.loudness_cutoff = loudness_cutoff
|
|
|
self.num_channels = num_channels
|
|
|
|
|
|
self.length = n_examples
|
|
|
self.transform = transform
|
|
|
self.sample_rate = sample_rate
|
|
|
self.duration = duration
|
|
|
self.offset = offset
|
|
|
self.aligned = aligned
|
|
|
self.shuffle_loaders = shuffle_loaders
|
|
|
self.without_replacement = without_replacement
|
|
|
|
|
|
if aligned:
|
|
|
loaders_list = list(loaders.values())
|
|
|
for i in range(len(loaders_list[0].audio_lists)):
|
|
|
input_lists = [l.audio_lists[i] for l in loaders_list]
|
|
|
# Alignment happens in-place
|
|
|
align_lists(input_lists, matcher)
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
state = util.random_state(idx)
|
|
|
offset = None if self.offset is None else self.offset
|
|
|
item = {}
|
|
|
|
|
|
keys = list(self.loaders.keys())
|
|
|
if self.shuffle_loaders:
|
|
|
state.shuffle(keys)
|
|
|
|
|
|
loader_kwargs = {
|
|
|
"state": state,
|
|
|
"sample_rate": self.sample_rate,
|
|
|
"duration": self.duration,
|
|
|
"loudness_cutoff": self.loudness_cutoff,
|
|
|
"num_channels": self.num_channels,
|
|
|
"global_idx": idx if self.without_replacement else None,
|
|
|
}
|
|
|
|
|
|
# Draw item from first loader
|
|
|
loader = self.loaders[keys[0]]
|
|
|
item[keys[0]] = loader(**loader_kwargs)
|
|
|
|
|
|
for key in keys[1:]:
|
|
|
loader = self.loaders[key]
|
|
|
if self.aligned:
|
|
|
# Path mapper takes the current loader + everything
|
|
|
# returned by the first loader.
|
|
|
offset = item[keys[0]]["signal"].metadata["offset"]
|
|
|
loader_kwargs.update({
|
|
|
"offset": offset,
|
|
|
"source_idx": item[keys[0]]["source_idx"],
|
|
|
"item_idx": item[keys[0]]["item_idx"],
|
|
|
})
|
|
|
item[key] = loader(**loader_kwargs)
|
|
|
|
|
|
# Sort dictionary back into original order
|
|
|
keys = list(self.loaders.keys())
|
|
|
item = {k: item[k] for k in keys}
|
|
|
|
|
|
item["idx"] = idx
|
|
|
if self.transform is not None:
|
|
|
item["transform_args"] = self.transform.instantiate(
|
|
|
state=state, signal=item[keys[0]]["signal"])
|
|
|
|
|
|
# If there's only one loader, pop it up
|
|
|
# to the main dictionary, instead of keeping it
|
|
|
# nested.
|
|
|
if len(keys) == 1:
|
|
|
item.update(item.pop(keys[0]))
|
|
|
|
|
|
return item
|
|
|
|
|
|
def __len__(self):
|
|
|
return self.length
|
|
|
|
|
|
@staticmethod
|
|
|
def collate(list_of_dicts: Union[list, dict], n_splits: int=None):
|
|
|
"""Collates items drawn from this dataset. Uses
|
|
|
:py:func:`audiotools.core.util.collate`.
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
list_of_dicts : typing.Union[list, dict]
|
|
|
Data drawn from each item.
|
|
|
n_splits : int
|
|
|
Number of splits to make when creating the batches (split into
|
|
|
sub-batches). Useful for things like gradient accumulation.
|
|
|
|
|
|
Returns
|
|
|
-------
|
|
|
dict
|
|
|
Dictionary of batched data.
|
|
|
"""
|
|
|
return util.collate(list_of_dicts, n_splits=n_splits)
|
|
|
|
|
|
|
|
|
class ConcatDataset(AudioDataset):
|
|
|
#
|
|
|
def __init__(self, datasets: list):
|
|
|
self.datasets = datasets
|
|
|
|
|
|
def __len__(self):
|
|
|
return sum([len(d) for d in self.datasets])
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
dataset = self.datasets[idx % len(self.datasets)]
|
|
|
return dataset[idx // len(self.datasets)]
|
|
|
|
|
|
|
|
|
class ResumableDistributedSampler(DistributedBatchSampler):
|
|
|
"""Distributed sampler that can be resumed from a given start index."""
|
|
|
|
|
|
def __init__(self,
|
|
|
dataset,
|
|
|
batch_size,
|
|
|
start_idx: int=None,
|
|
|
num_replicas=None,
|
|
|
rank=None,
|
|
|
shuffle=False,
|
|
|
drop_last=False):
|
|
|
super().__init__(
|
|
|
dataset=dataset,
|
|
|
batch_size=batch_size,
|
|
|
num_replicas=num_replicas,
|
|
|
rank=rank,
|
|
|
shuffle=shuffle,
|
|
|
drop_last=drop_last, )
|
|
|
# Start index, allows to resume an experiment at the index it was
|
|
|
if start_idx is not None:
|
|
|
self.start_idx = start_idx // self.num_replicas
|
|
|
else:
|
|
|
self.start_idx = 0
|
|
|
# 重新计算样本总数,因为 DistributedBatchSampler 的 __len__ 方法是基于 shuffle 后的样本总数计算的
|
|
|
self.total_size = len(self.dataset) if not shuffle else len(
|
|
|
self.indices)
|
|
|
|
|
|
def __iter__(self):
|
|
|
# 由于 Paddle 的 DistributedBatchSampler 直接返回 batch,我们需要将其展开为单个索引
|
|
|
indices_iter = iter(super().__iter__())
|
|
|
# 跳过前面的 start_idx 个 batch
|
|
|
for _ in range(self.start_idx):
|
|
|
next(indices_iter)
|
|
|
|
|
|
current_idx = 0
|
|
|
while True:
|
|
|
batch_indices = next(indices_iter, None)
|
|
|
if batch_indices is None:
|
|
|
break
|
|
|
for idx in batch_indices:
|
|
|
if current_idx >= self.start_idx * self.batch_size: # 调整判断条件,确保从 start_idx 开始
|
|
|
yield idx
|
|
|
current_idx += 1
|
|
|
self.start_idx = 0 # set the index back to 0 so for the next epoch
|
|
|
|
|
|
|
|
|
class ResumableSequentialSampler(SequenceSampler):
|
|
|
"""Sequential sampler that can be resumed from a given start index."""
|
|
|
|
|
|
def __init__(self, dataset, start_idx: int=None, **kwargs):
|
|
|
super().__init__(dataset, **kwargs)
|
|
|
# Start index, allows to resume an experiment at the index it was
|
|
|
self.start_idx = start_idx if start_idx is not None else 0
|
|
|
|
|
|
def __iter__(self):
|
|
|
for i, idx in enumerate(super().__iter__()):
|
|
|
if i >= self.start_idx:
|
|
|
yield idx
|
|
|
self.start_idx = 0 # set the index back to 0 so for the next epoch
|