You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/bin/paddlespeech_client.py

362 lines
12 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import base64
import io
import json
import os
import random
import time
from typing import List
import logging
import asyncio
import numpy as np
import requests
import soundfile
from ..executor import BaseExecutor
from ..util import cli_client_register
from ..util import stats_wrapper
from paddlespeech.cli.log import logger
from paddlespeech.server.utils.audio_process import wav2pcm
from paddlespeech.server.utils.util import wav2base64
from paddlespeech.server.tests.asr.online.websocket_client import ASRAudioHandler
__all__ = ['TTSClientExecutor', 'ASRClientExecutor', 'CLSClientExecutor']
@cli_client_register(
name='paddlespeech_client.tts', description='visit tts service')
class TTSClientExecutor(BaseExecutor):
def __init__(self):
super(TTSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.tts', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Text to be synthesized.',
required=True)
self.parser.add_argument(
'--spk_id', type=int, default=0, help='Speaker id')
self.parser.add_argument(
'--speed',
type=float,
default=1.0,
help='Audio speed, the value should be set between 0 and 3')
self.parser.add_argument(
'--volume',
type=float,
default=1.0,
help='Audio volume, the value should be set between 0 and 3')
self.parser.add_argument(
'--sample_rate',
type=int,
default=0,
choices=[0, 8000, 16000],
help='Sampling rate, the default is the same as the model')
self.parser.add_argument(
'--output', type=str, default=None, help='Synthesized audio file')
def postprocess(self, wav_base64: str, outfile: str) -> float:
audio_data_byte = base64.b64decode(wav_base64)
# from byte
samples, sample_rate = soundfile.read(
io.BytesIO(audio_data_byte), dtype='float32')
# transform audio
if outfile.endswith(".wav"):
soundfile.write(outfile, samples, sample_rate)
elif outfile.endswith(".pcm"):
temp_wav = str(random.getrandbits(128)) + ".wav"
soundfile.write(temp_wav, samples, sample_rate)
wav2pcm(temp_wav, outfile, data_type=np.int16)
os.system("rm %s" % (temp_wav))
else:
logger.error("The format for saving audio only supports wav or pcm")
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
spk_id = args.spk_id
speed = args.speed
volume = args.volume
sample_rate = args.sample_rate
output = args.output
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
spk_id=spk_id,
speed=speed,
volume=volume,
sample_rate=sample_rate,
output=output)
time_end = time.time()
time_consume = time_end - time_start
response_dict = res.json()
logger.info(response_dict["message"])
logger.info("Save synthesized audio successfully on %s." % (output))
logger.info("Audio duration: %f s." %
(response_dict['result']['duration']))
logger.info("Response time: %f s." % (time_consume))
return True
except Exception as e:
logger.error("Failed to synthesized audio.")
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
spk_id: int=0,
speed: float=1.0,
volume: float=1.0,
sample_rate: int=0,
output: str=None):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/tts'
request = {
"text": input,
"spk_id": spk_id,
"speed": speed,
"volume": volume,
"sample_rate": sample_rate,
"save_path": output
}
res = requests.post(url, json.dumps(request))
response_dict = res.json()
if output is not None:
self.postprocess(response_dict["result"]["audio"], output)
return res
@cli_client_register(
name='paddlespeech_client.asr', description='visit asr service')
class ASRClientExecutor(BaseExecutor):
def __init__(self):
super(ASRClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.asr', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to be recognized',
required=True)
self.parser.add_argument(
'--sample_rate', type=int, default=16000, help='audio sample rate')
self.parser.add_argument(
'--lang', type=str, default="zh_cn", help='language')
self.parser.add_argument(
'--audio_format', type=str, default="wav", help='audio format')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format)
time_end = time.time()
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech recognition.")
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
sample_rate: int=16000,
lang: str="zh_cn",
audio_format: str="wav"):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/asr'
audio = wav2base64(input)
data = {
"audio": audio,
"audio_format": audio_format,
"sample_rate": sample_rate,
"lang": lang,
}
res = requests.post(url=url, data=json.dumps(data))
return res
@cli_client_register(
name='paddlespeech_client.asr_online', description='visit asr online service')
class ASRClientExecutor(BaseExecutor):
def __init__(self):
super(ASRClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.asr', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8091, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to be recognized',
required=True)
self.parser.add_argument(
'--sample_rate', type=int, default=16000, help='audio sample rate')
self.parser.add_argument(
'--lang', type=str, default="zh_cn", help='language')
self.parser.add_argument(
'--audio_format', type=str, default="wav", help='audio format')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format)
time_end = time.time()
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech recognition.")
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8091,
sample_rate: int=16000,
lang: str="zh_cn",
audio_format: str="wav"):
"""
Python API to call an executor.
"""
logging.basicConfig(level=logging.INFO)
logging.info("asr websocket client start")
handler = ASRAudioHandler(server_ip, port)
loop = asyncio.get_event_loop()
loop.run_until_complete(handler.run(input))
logging.info("asr websocket client finished")
@cli_client_register(
name='paddlespeech_client.cls', description='visit cls service')
class CLSClientExecutor(BaseExecutor):
def __init__(self):
super(CLSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.cls', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to classify.',
required=True)
self.parser.add_argument(
'--topk',
type=int,
default=1,
help='Return topk scores of classification result.')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
topk = args.topk
try:
time_start = time.time()
res = self(input=input_, server_ip=server_ip, port=port, topk=topk)
time_end = time.time()
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech classification.")
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
topk: int=1):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/cls'
audio = wav2base64(input)
data = {"audio": audio, "topk": topk}
res = requests.post(url=url, data=json.dumps(data))
return res