You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
8.5 KiB
263 lines
8.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any
|
|
from typing import List
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from deepspeech.decoders.scorers.scorer_interface import BatchScorerInterface
|
|
from deepspeech.models.lm_interface import LMInterface
|
|
from deepspeech.modules.encoder import TransformerEncoder
|
|
from deepspeech.modules.mask import subsequent_mask
|
|
from deepspeech.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
|
|
def __init__(self,
|
|
n_vocab: int,
|
|
pos_enc: str=None,
|
|
embed_unit: int=128,
|
|
att_unit: int=256,
|
|
head: int=2,
|
|
unit: int=1024,
|
|
layer: int=4,
|
|
dropout_rate: float=0.5,
|
|
emb_dropout_rate: float=0.0,
|
|
att_dropout_rate: float=0.0,
|
|
tie_weights: bool=False,
|
|
**kwargs):
|
|
nn.Layer.__init__(self)
|
|
|
|
if pos_enc == "sinusoidal":
|
|
pos_enc_layer_type = "abs_pos"
|
|
elif pos_enc is None:
|
|
pos_enc_layer_type = "no_pos"
|
|
else:
|
|
raise ValueError(f"unknown pos-enc option: {pos_enc}")
|
|
|
|
self.embed = nn.Embedding(n_vocab, embed_unit)
|
|
|
|
if emb_dropout_rate == 0.0:
|
|
self.embed_drop = None
|
|
else:
|
|
self.embed_drop = nn.Dropout(emb_dropout_rate)
|
|
|
|
self.encoder = TransformerEncoder(
|
|
input_size=embed_unit,
|
|
output_size=att_unit,
|
|
attention_heads=head,
|
|
linear_units=unit,
|
|
num_blocks=layer,
|
|
dropout_rate=dropout_rate,
|
|
attention_dropout_rate=att_dropout_rate,
|
|
input_layer="linear",
|
|
pos_enc_layer_type=pos_enc_layer_type,
|
|
concat_after=False,
|
|
static_chunk_size=1,
|
|
use_dynamic_chunk=False,
|
|
use_dynamic_left_chunk=False)
|
|
|
|
self.decoder = nn.Linear(att_unit, n_vocab)
|
|
|
|
logger.info("Tie weights set to {}".format(tie_weights))
|
|
logger.info("Dropout set to {}".format(dropout_rate))
|
|
logger.info("Emb Dropout set to {}".format(emb_dropout_rate))
|
|
logger.info("Att Dropout set to {}".format(att_dropout_rate))
|
|
|
|
if tie_weights:
|
|
assert (
|
|
att_unit == embed_unit
|
|
), "Tie Weights: True need embedding and final dimensions to match"
|
|
self.decoder.weight = self.embed.weight
|
|
|
|
def _target_mask(self, ys_in_pad):
|
|
ys_mask = ys_in_pad != 0
|
|
m = subsequent_mask(ys_mask.size(-1)).unsqueeze(0)
|
|
return ys_mask.unsqueeze(-2) & m
|
|
|
|
def forward(self, x: paddle.Tensor, t: paddle.Tensor
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
"""Compute LM loss value from buffer sequences.
|
|
|
|
Args:
|
|
x (paddle.Tensor): Input ids. (batch, len)
|
|
t (paddle.Tensor): Target ids. (batch, len)
|
|
|
|
Returns:
|
|
tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: Tuple of
|
|
loss to backward (scalar),
|
|
negative log-likelihood of t: -log p(t) (scalar) and
|
|
the number of elements in x (scalar)
|
|
|
|
Notes:
|
|
The last two return values are used
|
|
in perplexity: p(t)^{-n} = exp(-log p(t) / n)
|
|
|
|
"""
|
|
xm = x != 0
|
|
xlen = xm.sum(axis=1)
|
|
if self.embed_drop is not None:
|
|
emb = self.embed_drop(self.embed(x))
|
|
else:
|
|
emb = self.embed(x)
|
|
h, _ = self.encoder(emb, xlen)
|
|
y = self.decoder(h)
|
|
loss = F.cross_entropy(
|
|
y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
|
|
mask = xm.to(dtype=loss.dtype)
|
|
logp = loss * mask.view(-1)
|
|
logp = logp.sum()
|
|
count = mask.sum()
|
|
return logp / count, logp, count
|
|
|
|
# beam search API (see ScorerInterface)
|
|
def score(self, y: paddle.Tensor, state: Any,
|
|
x: paddle.Tensor) -> Tuple[paddle.Tensor, Any]:
|
|
"""Score new token.
|
|
|
|
Args:
|
|
y (paddle.Tensor): 1D paddle.int64 prefix tokens.
|
|
state: Scorer state for prefix tokens
|
|
x (paddle.Tensor): encoder feature that generates ys.
|
|
|
|
Returns:
|
|
tuple[paddle.Tensor, Any]: Tuple of
|
|
paddle.float32 scores for next token (n_vocab)
|
|
and next state for ys
|
|
|
|
"""
|
|
y = y.unsqueeze(0)
|
|
|
|
if self.embed_drop is not None:
|
|
emb = self.embed_drop(self.embed(y))
|
|
else:
|
|
emb = self.embed(y)
|
|
|
|
h, _, cache = self.encoder.forward_one_step(
|
|
emb, self._target_mask(y), cache=state)
|
|
h = self.decoder(h[:, -1])
|
|
logp = F.log_softmax(h).squeeze(0)
|
|
return logp, cache
|
|
|
|
# batch beam search API (see BatchScorerInterface)
|
|
def batch_score(self,
|
|
ys: paddle.Tensor,
|
|
states: List[Any],
|
|
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
|
|
"""Score new token batch (required).
|
|
|
|
Args:
|
|
ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen).
|
|
states (List[Any]): Scorer states for prefix tokens.
|
|
xs (paddle.Tensor):
|
|
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
|
|
|
Returns:
|
|
tuple[paddle.Tensor, List[Any]]: Tuple of
|
|
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
|
and next state list for ys.
|
|
|
|
"""
|
|
# merge states
|
|
n_batch = len(ys)
|
|
n_layers = len(self.encoder.encoders)
|
|
if states[0] is None:
|
|
batch_state = None
|
|
else:
|
|
# transpose state of [batch, layer] into [layer, batch]
|
|
batch_state = [
|
|
paddle.stack([states[b][i] for b in range(n_batch)])
|
|
for i in range(n_layers)
|
|
]
|
|
|
|
if self.embed_drop is not None:
|
|
emb = self.embed_drop(self.embed(ys))
|
|
else:
|
|
emb = self.embed(ys)
|
|
|
|
# batch decoding
|
|
h, _, states = self.encoder.forward_one_step(
|
|
emb, self._target_mask(ys), cache=batch_state)
|
|
h = self.decoder(h[:, -1])
|
|
logp = F.log_softmax(h)
|
|
|
|
# transpose state of [layer, batch] into [batch, layer]
|
|
state_list = [[states[i][b] for i in range(n_layers)]
|
|
for b in range(n_batch)]
|
|
return logp, state_list
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tlm = TransformerLM(
|
|
n_vocab=5002,
|
|
pos_enc=None,
|
|
embed_unit=128,
|
|
att_unit=512,
|
|
head=8,
|
|
unit=2048,
|
|
layer=16,
|
|
dropout_rate=0.5, )
|
|
|
|
# n_vocab: int,
|
|
# pos_enc: str=None,
|
|
# embed_unit: int=128,
|
|
# att_unit: int=256,
|
|
# head: int=2,
|
|
# unit: int=1024,
|
|
# layer: int=4,
|
|
# dropout_rate: float=0.5,
|
|
# emb_dropout_rate: float = 0.0,
|
|
# att_dropout_rate: float = 0.0,
|
|
# tie_weights: bool = False,):
|
|
paddle.set_device("cpu")
|
|
model_dict = paddle.load("transformerLM.pdparams")
|
|
tlm.set_state_dict(model_dict)
|
|
|
|
tlm.eval()
|
|
#Test the score
|
|
input2 = np.array([5])
|
|
input2 = paddle.to_tensor(input2)
|
|
state = None
|
|
output, state = tlm.score(input2, state, None)
|
|
|
|
input3 = np.array([5, 10])
|
|
input3 = paddle.to_tensor(input3)
|
|
output, state = tlm.score(input3, state, None)
|
|
|
|
input4 = np.array([5, 10, 0])
|
|
input4 = paddle.to_tensor(input4)
|
|
output, state = tlm.score(input4, state, None)
|
|
print("output", output)
|
|
"""
|
|
#Test the batch score
|
|
batch_size = 2
|
|
inp2 = np.array([[5], [10]])
|
|
inp2 = paddle.to_tensor(inp2)
|
|
output, states = tlm.batch_score(
|
|
inp2, [(None,None,0)] * batch_size)
|
|
inp3 = np.array([[100], [30]])
|
|
inp3 = paddle.to_tensor(inp3)
|
|
output, states = tlm.batch_score(
|
|
inp3, states)
|
|
print("output", output)
|
|
#print("cache", cache)
|
|
#np.save("output_pd.npy", output)
|
|
"""
|