You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
14 KiB
355 lines
14 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
import tarfile
|
|
import time
|
|
from collections import namedtuple
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
from paddle.io import Dataset
|
|
from yacs.config import CfgNode
|
|
|
|
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
|
|
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
|
|
from deepspeech.frontend.normalizer import FeatureNormalizer
|
|
from deepspeech.frontend.speech import SpeechSegment
|
|
from deepspeech.frontend.utility import read_manifest
|
|
from deepspeech.utils.log import Log
|
|
|
|
__all__ = [
|
|
"ManifestDataset",
|
|
]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
# namedtupe need global for pickle.
|
|
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
|
|
|
|
|
|
class ManifestDataset(Dataset):
|
|
@classmethod
|
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
|
default = CfgNode(
|
|
dict(
|
|
train_manifest="",
|
|
dev_manifest="",
|
|
test_manifest="",
|
|
manifest="",
|
|
unit_type="char",
|
|
vocab_filepath="",
|
|
spm_model_prefix="",
|
|
mean_std_filepath="",
|
|
augmentation_config="",
|
|
max_input_len=27.0,
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0,
|
|
stride_ms=10.0, # ms
|
|
window_ms=20.0, # ms
|
|
n_fft=None, # fft points
|
|
max_freq=None, # None for samplerate/2
|
|
raw_wav=True, # use raw_wav or kaldi feature
|
|
specgram_type='linear', # 'linear', 'mfcc', 'fbank'
|
|
feat_dim=0, # 'mfcc', 'fbank'
|
|
delta_delta=False, # 'mfcc', 'fbank'
|
|
dither=1.0, # feature dither
|
|
target_sample_rate=16000, # target sample rate
|
|
use_dB_normalization=True,
|
|
target_dB=-20,
|
|
random_seed=0,
|
|
keep_transcription_text=False,
|
|
batch_size=32, # batch size
|
|
num_workers=0, # data loader workers
|
|
sortagrad=False, # sorted in first epoch when True
|
|
shuffle_method="batch_shuffle", # 'batch_shuffle', 'instance_shuffle'
|
|
))
|
|
|
|
if config is not None:
|
|
config.merge_from_other_cfg(default)
|
|
return default
|
|
|
|
@classmethod
|
|
def from_config(cls, config):
|
|
"""Build a ManifestDataset object from a config.
|
|
|
|
Args:
|
|
config (yacs.config.CfgNode): configs object.
|
|
|
|
Returns:
|
|
ManifestDataset: dataet object.
|
|
"""
|
|
assert 'manifest' in config.data
|
|
assert config.data.manifest
|
|
assert 'keep_transcription_text' in config.data
|
|
|
|
if isinstance(config.data.augmentation_config, (str, bytes)):
|
|
if config.data.augmentation_config:
|
|
aug_file = io.open(
|
|
config.data.augmentation_config, mode='r', encoding='utf8')
|
|
else:
|
|
aug_file = io.StringIO(initial_value='{}', newline='')
|
|
else:
|
|
aug_file = config.data.augmentation_config
|
|
assert isinstance(aug_file, io.StringIO)
|
|
|
|
dataset = cls(
|
|
manifest_path=config.data.manifest,
|
|
unit_type=config.data.unit_type,
|
|
vocab_filepath=config.data.vocab_filepath,
|
|
mean_std_filepath=config.data.mean_std_filepath,
|
|
spm_model_prefix=config.data.spm_model_prefix,
|
|
augmentation_config=aug_file.read(),
|
|
max_input_len=config.data.max_input_len,
|
|
min_input_len=config.data.min_input_len,
|
|
max_output_len=config.data.max_output_len,
|
|
min_output_len=config.data.min_output_len,
|
|
max_output_input_ratio=config.data.max_output_input_ratio,
|
|
min_output_input_ratio=config.data.min_output_input_ratio,
|
|
stride_ms=config.data.stride_ms,
|
|
window_ms=config.data.window_ms,
|
|
n_fft=config.data.n_fft,
|
|
max_freq=config.data.max_freq,
|
|
target_sample_rate=config.data.target_sample_rate,
|
|
specgram_type=config.data.specgram_type,
|
|
feat_dim=config.data.feat_dim,
|
|
delta_delta=config.data.delta_delta,
|
|
dither=config.data.dither,
|
|
use_dB_normalization=config.data.use_dB_normalization,
|
|
target_dB=config.data.target_dB,
|
|
random_seed=config.data.random_seed,
|
|
keep_transcription_text=config.data.keep_transcription_text)
|
|
return dataset
|
|
|
|
def __init__(self,
|
|
manifest_path,
|
|
unit_type,
|
|
vocab_filepath,
|
|
mean_std_filepath,
|
|
spm_model_prefix=None,
|
|
augmentation_config='{}',
|
|
max_input_len=float('inf'),
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0,
|
|
stride_ms=10.0,
|
|
window_ms=20.0,
|
|
n_fft=None,
|
|
max_freq=None,
|
|
target_sample_rate=16000,
|
|
specgram_type='linear',
|
|
feat_dim=None,
|
|
delta_delta=False,
|
|
dither=1.0,
|
|
use_dB_normalization=True,
|
|
target_dB=-20,
|
|
random_seed=0,
|
|
keep_transcription_text=False):
|
|
"""Manifest Dataset
|
|
|
|
Args:
|
|
manifest_path (str): manifest josn file path
|
|
unit_type(str): token unit type, e.g. char, word, spm
|
|
vocab_filepath (str): vocab file path.
|
|
mean_std_filepath (str): mean and std file path, which suffix is *.npy
|
|
spm_model_prefix (str): spm model prefix, need if `unit_type` is spm.
|
|
augmentation_config (str, optional): augmentation json str. Defaults to '{}'.
|
|
max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
|
|
min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
|
|
max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0.
|
|
min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0.
|
|
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0.
|
|
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05.
|
|
stride_ms (float, optional): stride size in ms. Defaults to 10.0.
|
|
window_ms (float, optional): window size in ms. Defaults to 20.0.
|
|
n_fft (int, optional): fft points for rfft. Defaults to None.
|
|
max_freq (int, optional): max cut freq. Defaults to None.
|
|
target_sample_rate (int, optional): target sample rate which used for training. Defaults to 16000.
|
|
specgram_type (str, optional): 'linear', 'mfcc' or 'fbank'. Defaults to 'linear'.
|
|
feat_dim (int, optional): audio feature dim, using by 'mfcc' or 'fbank'. Defaults to None.
|
|
delta_delta (bool, optional): audio feature with delta-delta, using by 'fbank' or 'mfcc'. Defaults to False.
|
|
use_dB_normalization (bool, optional): do dB normalization. Defaults to True.
|
|
target_dB (int, optional): target dB. Defaults to -20.
|
|
random_seed (int, optional): for random generator. Defaults to 0.
|
|
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
|
|
"""
|
|
super().__init__()
|
|
self._stride_ms = stride_ms
|
|
self._target_sample_rate = target_sample_rate
|
|
|
|
self._normalizer = FeatureNormalizer(
|
|
mean_std_filepath) if mean_std_filepath else None
|
|
self._augmentation_pipeline = AugmentationPipeline(
|
|
augmentation_config=augmentation_config, random_seed=random_seed)
|
|
self._speech_featurizer = SpeechFeaturizer(
|
|
unit_type=unit_type,
|
|
vocab_filepath=vocab_filepath,
|
|
spm_model_prefix=spm_model_prefix,
|
|
specgram_type=specgram_type,
|
|
feat_dim=feat_dim,
|
|
delta_delta=delta_delta,
|
|
stride_ms=stride_ms,
|
|
window_ms=window_ms,
|
|
n_fft=n_fft,
|
|
max_freq=max_freq,
|
|
target_sample_rate=target_sample_rate,
|
|
use_dB_normalization=use_dB_normalization,
|
|
target_dB=target_dB,
|
|
dither=dither)
|
|
|
|
self._rng = np.random.RandomState(random_seed)
|
|
self._keep_transcription_text = keep_transcription_text
|
|
# for caching tar files info
|
|
self._local_data = TarLocalData(tar2info={}, tar2object={})
|
|
|
|
# read manifest
|
|
self._manifest = read_manifest(
|
|
manifest_path=manifest_path,
|
|
max_input_len=max_input_len,
|
|
min_input_len=min_input_len,
|
|
max_output_len=max_output_len,
|
|
min_output_len=min_output_len,
|
|
max_output_input_ratio=max_output_input_ratio,
|
|
min_output_input_ratio=min_output_input_ratio)
|
|
self._manifest.sort(key=lambda x: x["feat_shape"][0])
|
|
|
|
@property
|
|
def manifest(self):
|
|
return self._manifest
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self._speech_featurizer.vocab_size
|
|
|
|
@property
|
|
def vocab_list(self):
|
|
return self._speech_featurizer.vocab_list
|
|
|
|
@property
|
|
def vocab_dict(self):
|
|
return self._speech_featurizer.vocab_dict
|
|
|
|
@property
|
|
def text_feature(self):
|
|
return self._speech_featurizer.text_feature
|
|
|
|
@property
|
|
def feature_size(self):
|
|
return self._speech_featurizer.feature_size
|
|
|
|
@property
|
|
def stride_ms(self):
|
|
return self._speech_featurizer.stride_ms
|
|
|
|
def _parse_tar(self, file):
|
|
"""Parse a tar file to get a tarfile object
|
|
and a map containing tarinfoes
|
|
"""
|
|
result = {}
|
|
f = tarfile.open(file)
|
|
for tarinfo in f.getmembers():
|
|
result[tarinfo.name] = tarinfo
|
|
return f, result
|
|
|
|
def _subfile_from_tar(self, file):
|
|
"""Get subfile object from tar.
|
|
|
|
It will return a subfile object from tar file
|
|
and cached tar file info for next reading request.
|
|
"""
|
|
tarpath, filename = file.split(':', 1)[1].split('#', 1)
|
|
if 'tar2info' not in self._local_data.__dict__:
|
|
self._local_data.tar2info = {}
|
|
if 'tar2object' not in self._local_data.__dict__:
|
|
self._local_data.tar2object = {}
|
|
if tarpath not in self._local_data.tar2info:
|
|
object, infoes = self._parse_tar(tarpath)
|
|
self._local_data.tar2info[tarpath] = infoes
|
|
self._local_data.tar2object[tarpath] = object
|
|
return self._local_data.tar2object[tarpath].extractfile(
|
|
self._local_data.tar2info[tarpath][filename])
|
|
|
|
def process_utterance(self, utt, audio_file, transcript):
|
|
"""Load, augment, featurize and normalize for speech data.
|
|
|
|
:param audio_file: Filepath or file object of audio file.
|
|
:type audio_file: str | file
|
|
:param transcript: Transcription text.
|
|
:type transcript: str
|
|
:return: Tuple of audio feature tensor and data of transcription part,
|
|
where transcription part could be token ids or text.
|
|
:rtype: tuple of (2darray, list)
|
|
"""
|
|
start_time = time.time()
|
|
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
|
|
speech_segment = SpeechSegment.from_file(
|
|
self._subfile_from_tar(audio_file), transcript)
|
|
else:
|
|
speech_segment = SpeechSegment.from_file(audio_file, transcript)
|
|
load_wav_time = time.time() - start_time
|
|
#logger.debug(f"load wav time: {load_wav_time}")
|
|
|
|
# audio augment
|
|
start_time = time.time()
|
|
self._augmentation_pipeline.transform_audio(speech_segment)
|
|
audio_aug_time = time.time() - start_time
|
|
#logger.debug(f"audio augmentation time: {audio_aug_time}")
|
|
|
|
start_time = time.time()
|
|
specgram, transcript_part = self._speech_featurizer.featurize(
|
|
speech_segment, self._keep_transcription_text)
|
|
if self._normalizer:
|
|
specgram = self._normalizer.apply(specgram)
|
|
feature_time = time.time() - start_time
|
|
#logger.debug(f"audio & test feature time: {feature_time}")
|
|
|
|
# specgram augment
|
|
start_time = time.time()
|
|
specgram = self._augmentation_pipeline.transform_feature(specgram)
|
|
feature_aug_time = time.time() - start_time
|
|
#logger.debug(f"audio feature augmentation time: {feature_aug_time}")
|
|
return utt, specgram, transcript_part
|
|
|
|
def _instance_reader_creator(self, manifest):
|
|
"""
|
|
Instance reader creator. Create a callable function to produce
|
|
instances of data.
|
|
|
|
Instance: a tuple of ndarray of audio spectrogram and a list of
|
|
token indices for transcript.
|
|
"""
|
|
|
|
def reader():
|
|
for instance in manifest:
|
|
# inst = self.process_utterance(instance["feat"],
|
|
# instance["text"])
|
|
inst = self.process_utterance(instance["utt"], instance["feat"],
|
|
instance["text"])
|
|
yield inst
|
|
|
|
return reader
|
|
|
|
def __len__(self):
|
|
return len(self._manifest)
|
|
|
|
def __getitem__(self, idx):
|
|
instance = self._manifest[idx]
|
|
return self.process_utterance(instance["utt"], instance["feat"],
|
|
instance["text"])
|
|
# return self.process_utterance(instance["feat"], instance["text"])
|