You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/asr/paddleinference/asr_engine.py

253 lines
9.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import time
from typing import Optional
import paddle
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.resource import CommonTaskResource
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.paddle_predictor import init_predictor
from paddlespeech.server.utils.paddle_predictor import run_model
from paddlespeech.utils.env import MODEL_HOME
__all__ = ['ASREngine', 'PaddleASRConnectionHandler']
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.task_resource = CommonTaskResource(
task='asr', model_format='static')
def _init_from_path(self,
model_type: str='wenetspeech',
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
self.max_len = 50
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.max_len = 50
self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None or am_model is None or am_params is None:
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
self.am_model = os.path.join(self.res_path,
self.task_resource.res_dict['model'])
self.am_params = os.path.join(self.res_path,
self.task_resource.res_dict['params'])
logger.info(self.res_path)
logger.info(self.cfg_path)
logger.info(self.am_model)
logger.info(self.am_params)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
with UpdateConfig(self.config):
if "deepspeech2" in model_type:
self.vocab = self.config.vocab_filepath
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.vocab,
spm_model_prefix=self.config.spm_model_prefix)
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type:
raise Exception("wrong type")
else:
raise Exception("wrong type")
# AM predictor
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
# decoder
self.decoder = CTCDecoder(
odim=self.config.output_dim, # <blank> is in vocab
enc_n_units=self.config.rnn_layer_size * 2,
blank_id=self.config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
@paddle.no_grad()
def infer(self, model_type: str):
"""
Model inference and result stored in self.output.
"""
cfg = self.config.decode
audio = self._inputs["audio"]
audio_len = self._inputs["audio_len"]
if "deepspeech2" in model_type:
decode_batch_size = audio.shape[0]
# init once
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
output_data = run_model(self.am_predictor,
[audio.numpy(), audio_len.numpy()])
probs = output_data[0]
eouts_len = output_data[1]
batch_size = probs.shape[0]
self.decoder.reset_decoder(batch_size=batch_size)
self.decoder.next(probs, eouts_len)
trans_best, trans_beam = self.decoder.decode()
# self.model.decoder.del_decoder()
self._outputs["result"] = trans_best[0]
elif "conformer" in model_type or "transformer" in model_type:
raise Exception("invalid model name")
else:
raise Exception("invalid model name")
class ASREngine(BaseEngine):
"""ASR server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.executor = ASRServerExecutor()
self.config = config
self.engine_type = "inference"
try:
if self.config.am_predictor_conf.device is not None:
self.device = self.config.am_predictor_conf.device
else:
self.device = paddle.get_device()
paddle.set_device(self.device)
except Exception as e:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
logger.error(e)
return False
self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
am_predictor_conf=self.config.am_predictor_conf)
logger.info("Initialize ASR server engine successfully.")
return True
class PaddleASRConnectionHandler(ASRServerExecutor):
def __init__(self, asr_engine):
"""The PaddleSpeech ASR Server Connection Handler
This connection process every asr server request
Args:
asr_engine (ASREngine): The ASR engine
"""
super().__init__()
self.input = None
self.output = None
self.asr_engine = asr_engine
self.executor = self.asr_engine.executor
self.config = self.executor.config
self.max_len = self.executor.max_len
self.decoder = self.executor.decoder
self.am_predictor = self.executor.am_predictor
self.text_feature = self.executor.text_feature
def run(self, audio_data):
"""engine run
Args:
audio_data (bytes): base64.b64decode
"""
if self._check(
io.BytesIO(audio_data), self.asr_engine.config.sample_rate,
self.asr_engine.config.force_yes):
logger.info("start running asr engine")
self.preprocess(self.asr_engine.config.model_type,
io.BytesIO(audio_data))
st = time.time()
self.infer(self.asr_engine.config.model_type)
infer_time = time.time() - st
self.output = self.postprocess() # Retrieve result of asr.
logger.info("end inferring asr engine")
else:
logger.info("file check failed!")
self.output = None
logger.info("inference time: {}".format(infer_time))
logger.info("asr engine type: paddle inference")