You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.1 KiB
193 lines
6.1 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import yaml
|
|
from paddle import distributed as dist
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.exps.fastspeech2.train import train_sp
|
|
|
|
from local.check_oov import get_check_result
|
|
from local.extract import extract_feature
|
|
from local.label_process import get_single_label
|
|
from local.prepare_env import generate_finetune_env
|
|
from utils.gen_duration_from_textgrid import gen_duration_from_textgrid
|
|
|
|
DICT_EN = 'tools/aligner/cmudict-0.7b'
|
|
DICT_ZH = 'tools/aligner/simple.lexicon'
|
|
MODEL_DIR_EN = 'tools/aligner/vctk_model.zip'
|
|
MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip'
|
|
MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml'
|
|
MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml'
|
|
MFA_PATH = 'tools/montreal-forced-aligner/bin'
|
|
os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH']
|
|
|
|
|
|
class TrainArgs():
|
|
def __init__(self, ngpu, config_file, dump_dir: Path, output_dir: Path):
|
|
self.config = str(config_file)
|
|
self.train_metadata = str(dump_dir / "train/norm/metadata.jsonl")
|
|
self.dev_metadata = str(dump_dir / "dev/norm/metadata.jsonl")
|
|
self.output_dir = str(output_dir)
|
|
self.ngpu = ngpu
|
|
self.phones_dict = str(dump_dir / "phone_id_map.txt")
|
|
self.speaker_dict = str(dump_dir / "speaker_id_map.txt")
|
|
self.voice_cloning = False
|
|
|
|
|
|
def get_mfa_result(
|
|
input_dir: Union[str, Path],
|
|
mfa_dir: Union[str, Path],
|
|
lang: str='en', ):
|
|
"""get mfa result
|
|
|
|
Args:
|
|
input_dir (Union[str, Path]): input dir including wav file and label
|
|
mfa_dir (Union[str, Path]): mfa result dir
|
|
lang (str, optional): input audio language. Defaults to 'en'.
|
|
"""
|
|
# MFA
|
|
if lang == 'en':
|
|
DICT = DICT_EN
|
|
MODEL_DIR = MODEL_DIR_EN
|
|
|
|
elif lang == 'zh':
|
|
DICT = DICT_ZH
|
|
MODEL_DIR = MODEL_DIR_ZH
|
|
else:
|
|
print('please input right lang!!')
|
|
|
|
CMD = 'mfa_align' + ' ' + str(
|
|
input_dir) + ' ' + DICT + ' ' + MODEL_DIR + ' ' + str(mfa_dir)
|
|
os.system(CMD)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# parse config and args
|
|
parser = argparse.ArgumentParser(
|
|
description="Preprocess audio and then extract features.")
|
|
|
|
parser.add_argument(
|
|
"--input_dir",
|
|
type=str,
|
|
default="./input/baker_mini",
|
|
help="directory containing audio and label file")
|
|
|
|
parser.add_argument(
|
|
"--pretrained_model_dir",
|
|
type=str,
|
|
default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0",
|
|
help="Path to pretrained model")
|
|
|
|
parser.add_argument(
|
|
"--mfa_dir",
|
|
type=str,
|
|
default="./mfa_result",
|
|
help="directory to save aligned files")
|
|
|
|
parser.add_argument(
|
|
"--dump_dir",
|
|
type=str,
|
|
default="./dump",
|
|
help="directory to save feature files and metadata.")
|
|
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="./exp/default/",
|
|
help="directory to save finetune model.")
|
|
|
|
parser.add_argument(
|
|
'--lang',
|
|
type=str,
|
|
default='zh',
|
|
choices=['zh', 'en'],
|
|
help='Choose input audio language. zh or en')
|
|
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=2, help="if ngpu=0, use cpu.")
|
|
|
|
parser.add_argument("--epoch", type=int, default=100, help="finetune epoch")
|
|
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=-1,
|
|
help="batch size, default -1 means same as pretrained model")
|
|
|
|
args = parser.parse_args()
|
|
|
|
fs = 24000
|
|
n_shift = 300
|
|
input_dir = Path(args.input_dir).expanduser()
|
|
mfa_dir = Path(args.mfa_dir).expanduser()
|
|
mfa_dir.mkdir(parents=True, exist_ok=True)
|
|
dump_dir = Path(args.dump_dir).expanduser()
|
|
dump_dir.mkdir(parents=True, exist_ok=True)
|
|
output_dir = Path(args.output_dir).expanduser()
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
pretrained_model_dir = Path(args.pretrained_model_dir).expanduser()
|
|
|
|
# read config
|
|
config_file = pretrained_model_dir / "default.yaml"
|
|
with open(config_file) as f:
|
|
config = CfgNode(yaml.safe_load(f))
|
|
config.max_epoch = config.max_epoch + args.epoch
|
|
if args.batch_size > 0:
|
|
config.batch_size = args.batch_size
|
|
|
|
if args.lang == 'en':
|
|
lexicon_file = DICT_EN
|
|
mfa_phone_file = MFA_PHONE_EN
|
|
elif args.lang == 'zh':
|
|
lexicon_file = DICT_ZH
|
|
mfa_phone_file = MFA_PHONE_ZH
|
|
else:
|
|
print('please input right lang!!')
|
|
am_phone_file = pretrained_model_dir / "phone_id_map.txt"
|
|
label_file = input_dir / "labels.txt"
|
|
|
|
#check phone for mfa and am finetune
|
|
oov_words, oov_files, oov_file_words = get_check_result(
|
|
label_file, lexicon_file, mfa_phone_file, am_phone_file)
|
|
input_dir = get_single_label(label_file, oov_files, input_dir)
|
|
|
|
# get mfa result
|
|
get_mfa_result(input_dir, mfa_dir, args.lang)
|
|
|
|
# # generate durations.txt
|
|
duration_file = "./durations.txt"
|
|
gen_duration_from_textgrid(mfa_dir, duration_file, fs, n_shift)
|
|
|
|
# generate phone and speaker map files
|
|
extract_feature(duration_file, config, input_dir, dump_dir,
|
|
pretrained_model_dir)
|
|
|
|
# create finetune env
|
|
generate_finetune_env(output_dir, pretrained_model_dir)
|
|
|
|
# create a new args for training
|
|
train_args = TrainArgs(args.ngpu, config_file, dump_dir, output_dir)
|
|
|
|
# finetune models
|
|
# dispatch
|
|
if args.ngpu > 1:
|
|
dist.spawn(train_sp, (train_args, config), nprocs=args.ngpu)
|
|
else:
|
|
train_sp(train_args, config)
|