You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.5 KiB
70 lines
2.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
from paddleaudio.backends import load as load_audio
|
|
from paddleaudio.datasets import ESC50
|
|
from paddleaudio.features import LogMelSpectrogram
|
|
from paddleaudio.features import melspectrogram
|
|
|
|
from paddlespeech.cls.models import cnn14
|
|
from paddlespeech.cls.models import SoundClassifier
|
|
|
|
# yapf: disable
|
|
parser = argparse.ArgumentParser(__doc__)
|
|
parser.add_argument("--wav", type=str, required=True, help="Audio file to infer.")
|
|
parser.add_argument("--feat_backend", type=str, choices=['numpy', 'paddle'], default='numpy', help="Choose backend to extract features from audio files.")
|
|
parser.add_argument("--top_k", type=int, default=1, help="Show top k predicted results")
|
|
parser.add_argument("--checkpoint", type=str, required=True, help="Checkpoint of model.")
|
|
args = parser.parse_args()
|
|
# yapf: enable
|
|
|
|
|
|
def extract_features(file: str, feat_backend: str='numpy',
|
|
**kwargs) -> paddle.Tensor:
|
|
waveform, sr = load_audio(file, sr=None)
|
|
|
|
if args.feat_backend == 'numpy':
|
|
feat = melspectrogram(waveform, sr, **kwargs).transpose()
|
|
feat = np.expand_dims(feat, 0)
|
|
feat = paddle.to_tensor(feat)
|
|
else:
|
|
feature_extractor = LogMelSpectrogram(sr=sr, **kwargs)
|
|
feat = feature_extractor(paddle.to_tensor(waveform).unsqueeze(0))
|
|
feat = paddle.transpose(feat, [0, 2, 1])
|
|
return feat
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model = SoundClassifier(
|
|
backbone=cnn14(pretrained=False, extract_embedding=True),
|
|
num_class=len(ESC50.label_list))
|
|
model.set_state_dict(paddle.load(args.checkpoint))
|
|
model.eval()
|
|
|
|
feat = extract_features(args.wav, args.feat_backend)
|
|
logits = model(feat)
|
|
probs = F.softmax(logits, axis=1).numpy()
|
|
|
|
sorted_indices = (-probs[0]).argsort()
|
|
|
|
msg = f'[{args.wav}]\n'
|
|
for idx in sorted_indices[:args.top_k]:
|
|
msg += f'{ESC50.label_list[idx]}: {probs[0][idx]}\n'
|
|
print(msg)
|