You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
9.4 KiB
275 lines
9.4 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
from paddle import DataParallel
|
|
from paddle import distributed as dist
|
|
from paddle import nn
|
|
from paddle.io import DataLoader
|
|
from paddle.io import DistributedBatchSampler
|
|
from paddle.optimizer import Adam
|
|
from paddle.optimizer.lr import MultiStepDecay
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
|
from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip
|
|
from paddlespeech.t2s.models.hifigan import HiFiGANEvaluator
|
|
from paddlespeech.t2s.models.hifigan import HiFiGANGenerator
|
|
from paddlespeech.t2s.models.hifigan import HiFiGANMultiScaleMultiPeriodDiscriminator
|
|
from paddlespeech.t2s.models.hifigan import HiFiGANUpdater
|
|
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
|
|
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
|
|
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
|
|
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
|
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
|
from paddlespeech.t2s.training.seeding import seed_everything
|
|
from paddlespeech.t2s.training.trainer import Trainer
|
|
|
|
|
|
def train_sp(args, config):
|
|
# decides device type and whether to run in parallel
|
|
# setup running environment correctly
|
|
world_size = paddle.distributed.get_world_size()
|
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
else:
|
|
paddle.set_device("gpu")
|
|
if world_size > 1:
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
# set the random seed, it is a must for multiprocess training
|
|
seed_everything(config.seed)
|
|
|
|
print(
|
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
|
)
|
|
|
|
# dataloader has been too verbose
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
# construct dataset for training and validation
|
|
with jsonlines.open(args.train_metadata, 'r') as reader:
|
|
train_metadata = list(reader)
|
|
train_dataset = DataTable(
|
|
data=train_metadata,
|
|
fields=["wave", "feats"],
|
|
converters={
|
|
"wave": np.load,
|
|
"feats": np.load,
|
|
}, )
|
|
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
|
dev_metadata = list(reader)
|
|
dev_dataset = DataTable(
|
|
data=dev_metadata,
|
|
fields=["wave", "feats"],
|
|
converters={
|
|
"wave": np.load,
|
|
"feats": np.load,
|
|
}, )
|
|
|
|
# collate function and dataloader
|
|
train_sampler = DistributedBatchSampler(
|
|
train_dataset,
|
|
batch_size=config.batch_size,
|
|
shuffle=True,
|
|
drop_last=True)
|
|
dev_sampler = DistributedBatchSampler(
|
|
dev_dataset,
|
|
batch_size=config.batch_size,
|
|
shuffle=False,
|
|
drop_last=False)
|
|
print("samplers done!")
|
|
|
|
if "aux_context_window" in config.generator_params:
|
|
aux_context_window = config.generator_params.aux_context_window
|
|
else:
|
|
aux_context_window = 0
|
|
train_batch_fn = Clip(
|
|
batch_max_steps=config.batch_max_steps,
|
|
hop_size=config.n_shift,
|
|
aux_context_window=aux_context_window)
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_sampler=train_sampler,
|
|
collate_fn=train_batch_fn,
|
|
num_workers=config.num_workers)
|
|
|
|
dev_dataloader = DataLoader(
|
|
dev_dataset,
|
|
batch_sampler=dev_sampler,
|
|
collate_fn=train_batch_fn,
|
|
num_workers=config.num_workers)
|
|
print("dataloaders done!")
|
|
|
|
generator = HiFiGANGenerator(**config["generator_params"])
|
|
discriminator = HiFiGANMultiScaleMultiPeriodDiscriminator(
|
|
**config["discriminator_params"])
|
|
if world_size > 1:
|
|
generator = DataParallel(generator)
|
|
discriminator = DataParallel(discriminator)
|
|
print("models done!")
|
|
|
|
criterion_feat_match = FeatureMatchLoss(**config["feat_match_loss_params"])
|
|
criterion_mel = MelSpectrogramLoss(
|
|
fs=config.fs,
|
|
fft_size=config.n_fft,
|
|
hop_size=config.n_shift,
|
|
win_length=config.win_length,
|
|
window=config.window,
|
|
num_mels=config.n_mels,
|
|
fmin=config.fmin,
|
|
fmax=config.fmax, )
|
|
criterion_gen_adv = GeneratorAdversarialLoss(
|
|
**config["generator_adv_loss_params"])
|
|
criterion_dis_adv = DiscriminatorAdversarialLoss(
|
|
**config["discriminator_adv_loss_params"])
|
|
print("criterions done!")
|
|
|
|
lr_schedule_g = MultiStepDecay(**config["generator_scheduler_params"])
|
|
# Compared to multi_band_melgan.v1 config, Adam optimizer without gradient norm is used
|
|
generator_grad_norm = config["generator_grad_norm"]
|
|
gradient_clip_g = nn.ClipGradByGlobalNorm(
|
|
generator_grad_norm) if generator_grad_norm > 0 else None
|
|
print("gradient_clip_g:", gradient_clip_g)
|
|
|
|
optimizer_g = Adam(
|
|
learning_rate=lr_schedule_g,
|
|
grad_clip=gradient_clip_g,
|
|
parameters=generator.parameters(),
|
|
**config["generator_optimizer_params"])
|
|
lr_schedule_d = MultiStepDecay(**config["discriminator_scheduler_params"])
|
|
discriminator_grad_norm = config["discriminator_grad_norm"]
|
|
gradient_clip_d = nn.ClipGradByGlobalNorm(
|
|
discriminator_grad_norm) if discriminator_grad_norm > 0 else None
|
|
print("gradient_clip_d:", gradient_clip_d)
|
|
optimizer_d = Adam(
|
|
learning_rate=lr_schedule_d,
|
|
grad_clip=gradient_clip_d,
|
|
parameters=discriminator.parameters(),
|
|
**config["discriminator_optimizer_params"])
|
|
print("optimizers done!")
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
if dist.get_rank() == 0:
|
|
config_name = args.config.split("/")[-1]
|
|
# copy conf to output_dir
|
|
shutil.copyfile(args.config, output_dir / config_name)
|
|
|
|
updater = HiFiGANUpdater(
|
|
models={
|
|
"generator": generator,
|
|
"discriminator": discriminator,
|
|
},
|
|
optimizers={
|
|
"generator": optimizer_g,
|
|
"discriminator": optimizer_d,
|
|
},
|
|
criterions={
|
|
"mel": criterion_mel,
|
|
"feat_match": criterion_feat_match,
|
|
"gen_adv": criterion_gen_adv,
|
|
"dis_adv": criterion_dis_adv,
|
|
},
|
|
schedulers={
|
|
"generator": lr_schedule_g,
|
|
"discriminator": lr_schedule_d,
|
|
},
|
|
dataloader=train_dataloader,
|
|
discriminator_train_start_steps=config.discriminator_train_start_steps,
|
|
# only hifigan have generator_train_start_steps
|
|
generator_train_start_steps=config.generator_train_start_steps,
|
|
lambda_adv=config.lambda_adv,
|
|
lambda_aux=config.lambda_aux,
|
|
lambda_feat_match=config.lambda_feat_match,
|
|
output_dir=output_dir)
|
|
|
|
evaluator = HiFiGANEvaluator(
|
|
models={
|
|
"generator": generator,
|
|
"discriminator": discriminator,
|
|
},
|
|
criterions={
|
|
"mel": criterion_mel,
|
|
"feat_match": criterion_feat_match,
|
|
"gen_adv": criterion_gen_adv,
|
|
"dis_adv": criterion_dis_adv,
|
|
},
|
|
dataloader=dev_dataloader,
|
|
lambda_adv=config.lambda_adv,
|
|
lambda_aux=config.lambda_aux,
|
|
lambda_feat_match=config.lambda_feat_match,
|
|
output_dir=output_dir)
|
|
|
|
trainer = Trainer(
|
|
updater,
|
|
stop_trigger=(config.train_max_steps, "iteration"),
|
|
out=output_dir)
|
|
|
|
if dist.get_rank() == 0:
|
|
trainer.extend(
|
|
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
|
|
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
|
|
trainer.extend(
|
|
Snapshot(max_size=config.num_snapshots),
|
|
trigger=(config.save_interval_steps, 'iteration'))
|
|
|
|
print("Trainer Done!")
|
|
trainer.run()
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
|
|
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
|
|
parser.add_argument("--config", type=str, help="HiFiGAN config file.")
|
|
parser.add_argument("--train-metadata", type=str, help="training data.")
|
|
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
with open(args.config, 'rt') as f:
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(config)
|
|
print(
|
|
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
|
)
|
|
|
|
# dispatch
|
|
if args.ngpu > 1:
|
|
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
|
else:
|
|
train_sp(args, config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|